The Sum and Difference Formulas - derivations (3 of 4: Trigonometric Identities) (A level)

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ • 24

  • @electrik_loss
    @electrik_loss 3 роки тому +5

    Heya, at 2:43, you could explain how you got √2 (√3+1)/4? I'm kinda confused.

    • @mathonify
      @mathonify  3 роки тому +5

      have a go at plugging in the exact values of sin45, sin30, cos45 and cos30 into the line above. I skipped a few lines of working out

    • @petermm8119
      @petermm8119 3 роки тому +2

      @@mathonify No, you lost me. You left out too many lines. I can get to Sqrt 2•Sqrt 3 /4, but how you got a +1 baffles me. On top of that, when I plug in sin 75 (0.96592...) and plug in the values into your equation, I dont come up with the same figure...

    • @petermm8119
      @petermm8119 3 роки тому +9

      @@mathonify Got it. At 22.18 in the evening, the neurons start slowing down. I see you factored out the sqrt 2.

  • @giack6235
    @giack6235 4 місяці тому +2

    Hello! Thank you for your very clear explanation, i have a question: this proofs seem true only when alfa and beta are acute angles. How to prove that they hold for any alpha and beta (even negative or 188 degrees or 520 degree or any other angle)?

    • @mathonify
      @mathonify  4 місяці тому +1

      Great question. These kinds of geometric proof don’t prove the case for angles > 180 directly but you can use other identities like sinx = sin (180-x). Eg if you have sin(150-x) it’s equivalent to sin(30+x) or sin(230-x)=sin(-50+x). I think that should be enough to extend these proofs.

    • @giack6235
      @giack6235 4 місяці тому +1

      @@mathonify Thank you for the answer, but at that point one could ask: "ok but how to prove the other identities?" I think the true starting point (of the other identities too) is taking the distance between any two point on the goniometric circumference and proving cos(x+y) = cos x cos y - sin x sin y. Then from there gaining all other trig formulas whatsoever

  • @King95gballer
    @King95gballer 4 роки тому +1

    Hey, At the 16:56 mark, you solved that angle and said it is A, how is that possible? Also, I solved it to be A+B

    • @King95gballer
      @King95gballer 4 роки тому +1

      Correction. Using the method similar to that one of using " a quadrilateral = 360 " I got a result of A+B. However, when I used the method of summing all the angles along the upper horizontal line of the square, I got the correct angle of A.

    • @mathonify
      @mathonify  4 роки тому +4

      Yes I would use the angles on the straight line to get angle A in that case. Not sure why I said “similar idea”.

    • @King95gballer
      @King95gballer 4 роки тому +4

      @@mathonify Thank you. Great video.

  • @JulianParry1
    @JulianParry1 3 роки тому +3

    Great video. Thank you 👍

  • @kamalmohamed7750
    @kamalmohamed7750 9 місяців тому

    Excellent explanation

  • @lifeishappening1651
    @lifeishappening1651 4 роки тому +3

    I know that you have to know exact trig values for GCSE but do you need to Know this as well ?

  • @marionabaho3023
    @marionabaho3023 3 роки тому +2

    Thank you so much

    • @marionabaho3023
      @marionabaho3023 3 роки тому +2

      Before seeing this video I had envy on trigonometry but now it's my favourite I don't know how much times I can thank you. To me you are a math guardian angel

  • @lavoiedereussite922
    @lavoiedereussite922 Рік тому

    thank

  • @jamestanny849
    @jamestanny849 Рік тому

    What if you got tan(2x - 84deg)=0? Nobody even teaches stuff like this...

    • @mathonify
      @mathonify  Рік тому

      This is a trigonometric equation that you need to solve. See my video on solving trig equations: ua-cam.com/video/kajoHHenS2Q/v-deo.html

    • @jamestanny849
      @jamestanny849 Рік тому

      @@mathonify The eq is a little different from those, taking tan^-1 on both sides only give two out of four solutions. Using the formula tan2u when there is (2x - 84 deg)? Does that work?

    • @NusaibaSalisu-tl5kc
      @NusaibaSalisu-tl5kc Рік тому +1

      This Soo helpful
      Tnx alot ..

  • @aLittlePal
    @aLittlePal Рік тому

    it is a decently logical challenging subject, trig, but the more you get into it, it changes into an academical damping machine
    how about some trig function of 16.4976
    so you can see these tricks are boring meaningless stuff, plays with easy radian degree of 35, 45, 60, etc
    human build calculator for this, you are not studying for becoming a human calculator