solve differential equation with substitution

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 63

  • @VetteTTV12
    @VetteTTV12 5 років тому +80

    Seriously wish you taught at my university. All of our higher class, calc3 and up, have really crappy instructors that care more about theory and proofs than actually showing us how to solve the problem. So a big thank you for helping those of us that need someone like you to break it down quick and simple in order to understand. If you have a patreon page or something let me know, you deserve some form of compensation for this. If it wasn't for you I would've failed a few different tests.

  • @sam-kx3ty
    @sam-kx3ty 4 роки тому +9

    You’re one of the best math lecturers in the world please keep it up .

  • @chuaprincecarl9845
    @chuaprincecarl9845 4 роки тому +23

    the marker switch is smooth af, Michael Jackson is proud.

  • @79Shotinthedark
    @79Shotinthedark 6 років тому +10

    This is my first time watching one of your videos. I appreciate how you take your time with the problem and that you write very clearly (surprisingly hard to find). Using the two colors made it easier to follow. I learn a lot of my math from UA-cam and this was very helpful. Thank you.

  • @Kapomafioso
    @Kapomafioso 7 років тому +9

    4:55 you could in fact solve for v. Let's say we have it in some final form like: sec(v) + tan(v) = r (r stands for whatever it is on the right-hand side)
    Then we do this: 1+sin(v) = cos (v) r
    1 + (e^iv - e^-iv)/2i = (r/2) (e^iv + e^-iv)
    Now let e^iv be p. Then we have:
    1 + (p + 1/p)/2i = (r/2) (p + 1/p) //multiply by 2 i p
    2 i p + p^2 + 1 = r i p^2 + r i
    This is some polynomial in variable p, solve for p, make out a logarithm out of it and "see" the arctan function in it. Other approach is:
    rewrite sin(v) - r cos(v) as: sqrt(1+r^2) sin(x + arctan(r))
    and you will finally obtain the same arctan formula. Of course, there would be some decisions like which root to take and add + 2*pi*integer somewhere when taking inverse functions, but, youknow, some people say: a differential equation is not complete unless you provide a sufficient set of initial and/or boundary conditions ;) so after you clarify initial condition, there should be no arbitrarity.

  • @ChefSalad
    @ChefSalad 6 років тому +13

    Without WolframAlpha, I know how to solve for v. Start by taking the exponential function of both sides, and relabeling the c: sec(v)+tan(v)=C₁*e^(-1/x). Change sec and tan to sin and cos and combine fractions: (1+sin(v))/cos(v)=C₁e^(1/x). Shift the sin and cos to cos and sin: (1+cos(v+π/2))/sin(v+π/2)=C₁e^(−1/x). Reciprocate: sin(v+π/2)/(1+cos(v+π/2))=C₂e^(1/x). Use the tangent half-angle identity: tan(v/2+π/4)=C₂e^(1/x). Take the arctan of both sides. v/2+π/4=arctan(C₂e^(1/x)). Solve for v: v=2arctan(C₂e^(1/x))−π/2. Substitute back in v=y/x²: y/x²=2arctan(C₂e^(1/x))−π/2. Solve for y: y=2x²arctan(C₂e^(1/x))−πx²/2. BAM! Solved for y.

  • @HonsHon
    @HonsHon 4 роки тому +3

    Thank you! Helping me so much in preparing for the final in my DE class. Ever since I was in Calc 2 I have been watching these, and they are so helpful.

  • @DougCube
    @DougCube 7 років тому +34

    Here is the closed-form solution: 2(x^2)arctan(tanh((Cx-1)/(2x))). Not that anyone cares...

    • @AkshayMuraliNerd098
      @AkshayMuraliNerd098 6 років тому +1

      DougCube how did u get that

    • @srpenguinbr
      @srpenguinbr 6 років тому +9

      @@AkshayMuraliNerd098 if you express sec(x) and tan(x) in terms of sin or cos, you can isolate the y

  • @ageofkz
    @ageofkz 7 років тому +6

    Is there a special name for this sort of functions where you make a substitution to solve it?
    For example, homogenous 1st ODE you will substitute f(y/x)=f(v), v=y/x.

  • @ivypellerin3166
    @ivypellerin3166 3 роки тому +3

    Thank you for showing how we get the substitution for dy/dx my profs like to skip intermediate steps also loved the flawless marker flipping hahaha

  • @candlelightc4699
    @candlelightc4699 Рік тому +2

    its 5 years later but thank you for the very clear explanation

  • @shaunakmehal6412
    @shaunakmehal6412 2 місяці тому

    Beautiful

  • @ramakrishna-bi1co
    @ramakrishna-bi1co 6 років тому

    Well explained

  • @JesusGarcia-ox3jj
    @JesusGarcia-ox3jj 7 років тому +3

    you should do more of these and Bernoulli's equation

    • @blackpenredpen
      @blackpenredpen  7 років тому +1

      Jesus Garcia they r coming this weekend

  • @Samir-zb3xk
    @Samir-zb3xk 8 місяців тому

    instead of using ln|sec(v)+tan(v)| for integral of sec(v) if we use artanh(sin(v)) (which is equivalent to ln|sec(v)+tan(v)), it makes it easy to solve for y
    i got y=x²arcsin(tanh(-1/x+c)) as final answer

  • @bioengboi137
    @bioengboi137 3 роки тому

    “There’s no way to isolate the v”. Well even though int{sec z dz} = ln|sec z + tan z|, I think the more proper form to rewrite it with one input & no absolute value; +/-, is that the int{sec z dz} = arctanh(sin z). So with some “function sliding”, y = x^2 arcsin(tanh(c - 1/x)). Cool fun fact the derivative of arcsin(tanh z) = sech z

  • @dalek1099
    @dalek1099 5 років тому +2

    Sec(u)+tan(u)=tan(1/2u+pi/4). Ln|tan(1/2u+pi/4)|=ln(tan(+-1/2u+pi/4))=
    -1/x+C tan(+-1/2u+pi/4)=Aexp(-1/x) +-1/2u+pi/4=arctan(Aexp(-1/x))+mpi. u=2arctan(Aexp(-1/x))+(2n-1)pi/2 y=x^2[2arctan(Aexp(-1/x))+(2n-1)pi/2]

  • @BriceLavorel
    @BriceLavorel 2 роки тому

    if you use arctanh(sin(x)) as a primitive of 1/cos(x), everything become easier : y = x^2 * arcsin(tanh(C-1/x))

  • @nra-sheta1882
    @nra-sheta1882 Рік тому +1

    He is a living legend 🎉

  • @SaifUlIslam-lw3dm
    @SaifUlIslam-lw3dm 2 місяці тому +1

    It's 7 years later... And still thanks...

  • @mickolaneluz829
    @mickolaneluz829 5 років тому

    Amazinggggg

  • @aditmistry4936
    @aditmistry4936 5 років тому +3

    How the hell do you switch markers so fast!?

    • @Jjdumott
      @Jjdumott 4 роки тому

      it is because they're in the same hand same time i was wondering that too lmao

  • @Yue27s
    @Yue27s 8 місяців тому

    Very nice mr asian

  • @CardThrower-rb6eg
    @CardThrower-rb6eg 6 місяців тому

    man thanks for saving me for my exam later

  • @SuperKSA707
    @SuperKSA707 3 роки тому

    Thank you! You're really helping us. god bless you

  • @YHWHsam
    @YHWHsam Рік тому

    five years later and ur still helping! 😂

  • @cormackjackson9442
    @cormackjackson9442 Рік тому

    Which type of ODE is this?

  • @shex9002
    @shex9002 9 місяців тому

    BRO THIS GUY IS THE BEST

  • @samuelminea5520
    @samuelminea5520 7 років тому +3

    the best teacher!

  • @someone2879
    @someone2879 5 років тому

    This is really helpful ... Thanks for uploading!

  • @MothyEmms
    @MothyEmms Рік тому

    gotta love an asian math teacher!

  • @spiritgoldmember7528
    @spiritgoldmember7528 6 років тому

    You can solve for v using a Weierstrass substitution.

  • @williamadams137
    @williamadams137 5 років тому +1

    Could the answer be sec(y/x^2)+ tan(y/x^2) = Ce^(-1/x) ?
    Note : after removing the absolute value, i put plus or minus on the other side and a “plus or minus” constant is another constant.

  • @undisputeddespicable
    @undisputeddespicable 3 роки тому

    Every thing is good but voice is too low

  • @reubenwilliammpembe667
    @reubenwilliammpembe667 6 років тому +2

    you are the best!!!
    #RespectFromSouthAfrica

  • @willlesslie6825
    @willlesslie6825 3 роки тому

    Getting some Doctor Who, the Ood Vibes here lol

  • @nathangething6418
    @nathangething6418 2 роки тому

    thank u this was very helpful

  • @anthonyvincentsukkar8047
    @anthonyvincentsukkar8047 3 роки тому

    legend

  • @TheEdthekidrePvP
    @TheEdthekidrePvP Рік тому

    thank u sir. i love u sir

  • @alexandermorozov2248
    @alexandermorozov2248 Рік тому

    Как выразить y(x) в явном виде?
    ~~~
    How to express y(x) explicitly?

    • @Samir-zb3xk
      @Samir-zb3xk 8 місяців тому +2

      instead of using ln|sec(v)+tan(v)| for integral of sec(v) if we use artanh(sin(v)) (which is equivalent to ln|sec(v)+tan(v)|), it makes it easy to solve for y
      i got y=x²arcsin(tanh(-1/x+c)) as final answer

  • @naregpanossian5900
    @naregpanossian5900 4 роки тому

    future aub 202 students...i feel u

  • @basirazad684
    @basirazad684 6 років тому

    well done !

  • @ipekisgin1608
    @ipekisgin1608 5 років тому

    Thank you!!!

  • @glydon-w2w522
    @glydon-w2w522 6 років тому

    This problem. Was so fking awsmmmmm

  • @dhuvsgg7553
    @dhuvsgg7553 6 років тому

    🤯

  • @dipayanguha9821
    @dipayanguha9821 7 років тому

    can u do this sum== tany dy/dx+tanx=cosy*cos^2x.

  • @abdoshaat3304
    @abdoshaat3304 2 роки тому

    SO WHAT IS Y FUNCTION?????

    • @Samir-zb3xk
      @Samir-zb3xk 8 місяців тому

      instead of using ln|sec(v)+tan(v)| for integral of sec(v) if we use artanh(sin(v)) (which is equivalent to ln|sec(v)+tan(v)|), it makes it easy to solve for y
      i got y=x²arcsin(tanh(-1/x+c)) as final answer

  • @strikerstone
    @strikerstone 10 місяців тому

    Ez

  • @MrSocialish
    @MrSocialish 7 років тому

    good shit

  • @clairewang38
    @clairewang38 4 роки тому +1

    正在写大学的作业哈哈哈 这个真的太给力啦

  • @vko7059
    @vko7059 3 роки тому

    Riiight?

  • @MrSaree12
    @MrSaree12 4 роки тому

    Why you do too much details when solving problem?. Like simple algebra