Methods of Functional Equations

Поділитися
Вставка
  • Опубліковано 13 січ 2025

КОМЕНТАРІ • 200

  • @voice4voicelessKrzysiek
    @voice4voicelessKrzysiek Рік тому +128

    Very nice! 74 and still learning.

    • @88kgs
      @88kgs Рік тому +11

      I wish to be like you.. and do maths @ age of 74..
      I am 47 now..
      👌Never stop learning
      Because when you stop learning, you stop living 👌

    • @The_Green_Man_OAP
      @The_Green_Man_OAP Рік тому +6

      I'm over eighty. This is no problem. I think I'll check out 'New Calculus' with John Gabriel now.
      -See ya later!

    • @sanaeelalioui6980
      @sanaeelalioui6980 10 місяців тому +2

      Me too 😂😂😂

    • @4anat
      @4anat 10 місяців тому +2

      I'm only 66 and I like this training.

    • @johnkabila6617
      @johnkabila6617 10 місяців тому +1

      Am in my 60s now relearning my favorite subject in high school.

  • @JosephChifamba
    @JosephChifamba 10 місяців тому +17

    Did uni math 39y ago (y85/86). Our professors would just write down so fast and we would copy and later teach ourselves evenings. I envy this tutor. The best there can be, simply the best!

  • @embracinglogic1744
    @embracinglogic1744 Рік тому +48

    My friend, you are the best math channel on YT. In fact, you are better than 99% of math professors. Thank you.

    • @kobey3044
      @kobey3044 9 місяців тому +1

      he is patient and his explanations are clear too. Make sense!!

  • @uzaytakip7221
    @uzaytakip7221 9 місяців тому +4

    This guy was born to be a teacher; humble and yet commanding.

  • @jamesharmon4994
    @jamesharmon4994 Рік тому +7

    Method 2 was so obvious once I saw it. I will never "freak out" again when I see problems of this type. Thank you!!

  • @manuelacosta9596
    @manuelacosta9596 9 місяців тому +1

    You are an excellent teacher. It makes me remember 45 years ago a teacher I had like you. It is very nice to know that there are still people with your passion and soul for teaching..👏👏👏

  • @ton_ak5119
    @ton_ak5119 Рік тому +3

    What a blessing this video showed up in my for you page. Not only you've been able to make me understand something I've never saw in school, but the energy and the passion you put in your lesson are inspiring. The pauses to let us think and absorb the conceps before moving on make the video perfect.
    "Those who stop learning stop living" is now my life instructions

  • @markTheWoodlands
    @markTheWoodlands Рік тому +15

    Consistently excellent work. Clear, concise and artful.

  • @SanePerson1
    @SanePerson1 4 місяці тому +2

    Frankly, I solved this as basically a 'word analogy' problem: x + 1 is to x as x is to x - 1. Therefore, you can solve the problem most quickly by taking the expression for f(x + 1) and if you substitute 'x - 1' in that expression everywhere you see an 'x', then simplify, you have an expression for f(x). Of course, that's is no different than doing the 't substitution' at 6:00, but it saves a step and it seems intuitively easy.

  • @tmjcbs
    @tmjcbs Рік тому +17

    I did it with a slight variation of method 2: f(x) = f((x-1)+1) = (x-1)^2-3(x-1)+2 = x^2-5x+6.

  • @williamspostoronnim9845
    @williamspostoronnim9845 Рік тому +3

    Превосходно! Наконец-то вижу внятное объяснение, как решать функциональное уравнение.

    • @xgx899
      @xgx899 8 місяців тому

      This is not a functional equation, but a triviality.

  • @kumarkailasanathan961
    @kumarkailasanathan961 Рік тому +2

    Concept is made very clear. Love your teachings. Wish all students will make best use of teachings

  • @ThePhysicsTutor-hb3iw
    @ThePhysicsTutor-hb3iw Рік тому +2

    Beautiful approach to the question. You are too good. The mistake that most students would have make was to substitute (x + 1) into the function x*2 - 3x + 2 which is a terrible idea.

  • @rafaelcueto8694
    @rafaelcueto8694 Рік тому +2

    Wow.... me encantó su forma de mostrar lo apasionante de las matemáticas y se siente lo mucho que las disfruta... me alegró de verdad... 😊

  • @robertlunderwood
    @robertlunderwood 5 місяців тому +1

    I took a bit of a different take. I saw a linear become a quadratic. Thus, I can assume that the function itself is quadratic. Set f(y) = ay² + by + c. Substitute y for x+1 and solve for a, b, and c.
    Admittedly, the methods in this video are indeed superior.

  • @dougaugustine4075
    @dougaugustine4075 5 місяців тому

    These things have been frustrating me for awhile. But today while sitting in the bathtub, it finally hit me and I understood the simplicity of the concept using t substitution. The first method was a nice touch too but for now I will simply be happy for the imoment of realization.

  • @punditgi
    @punditgi Рік тому +5

    Master of teaching. That is Prime Newtons! 😊

  • @andrewlayton9760
    @andrewlayton9760 Рік тому +1

    I appreciate that you start by asking very directly "What are we trying to find?"

  • @selahattinkara-o5h
    @selahattinkara-o5h 9 днів тому

    Your teaching style is super. I really congratulate you. You are great.👏

  • @SugarKane9547
    @SugarKane9547 9 місяців тому

    Wow, thank God for your life. Wish I had you as my maths teacher in secondary school.

  • @tayebtchikou1646
    @tayebtchikou1646 Рік тому +2

    So I'm one of the masters😁 thank you so much for what are you doing for us in order to learn maths easily

  • @bhgtree
    @bhgtree Рік тому +3

    You explain everything so well, I wish you were my teacher when I was in school (I am getting back into doing maths, hoping to do Calculus > analysis > abstract algebra etc).

  • @priyabrata_roy
    @priyabrata_roy 9 місяців тому +7

    just replace x by (x-1) in f(x+1)=.....u got it directly

  • @זאבגלברד
    @זאבגלברד 11 місяців тому

    In your second method you basically say "I will move the function back, one unit to the left". Another method is to write it in the form y=(x - p)^2 + k then add - 1 to p . Thank you for your videos. I learn from them.

  • @glorrin
    @glorrin Рік тому +86

    Sorry, I have been yelled at by my teachers so many times for not explicitly giving domain and range anytime I see a function, I now instinctively do it.

    • @ИринаРзаева-ф2с
      @ИринаРзаева-ф2с 5 місяців тому

      Обожаю африканцев, а три - это ноль и четыре тоже. Надеюсь пончо меня.

  • @yoavmenuhin5360
    @yoavmenuhin5360 4 місяці тому

    Man, i just love your passion so much, you have such a good feel for teaching l.
    I'm literally feel safe when i watch your videos.
    You are an inspiration and a blessing ❤️

  • @lindomarcarvalho1700
    @lindomarcarvalho1700 Рік тому +2

    Wonderful explanation!!!! Congrats!!!!

  • @mavanijj
    @mavanijj 9 місяців тому +1

    I am 42 ,It’s none of my business but still trying to understand becoz in school we even don’t know the use of it great job👌👌👌

  • @Senorbean
    @Senorbean 2 місяці тому

    thank you so much i was struggling in algebra but this has helped me tremendously

  • @gooddude9211
    @gooddude9211 11 місяців тому

    What a brilliant explanation sir. Loved it. Thank you.

  • @mateuszserzysko1921
    @mateuszserzysko1921 Рік тому +12

    We can also think, that we get function g(x) = f(x + 1) = (x - 1)(x - 2) by moving f one step to the left.
    As we can see, roots of g are 1 and 2, so roots of f are 2 and 3 respectively. Shape of a plot won't change because of moving function one step to the left, so we get f(x) = (x - 2)(x - 3).
    I prefer to imagine, how function actually "looks like", before I'll dive into algebra ^^

    • @youben3468
      @youben3468 Рік тому

      Tranlation with vector v=-1i

  • @Nikioko
    @Nikioko Рік тому +21

    f(x+1) = x² − 3x + 2
    f(x) = (x − 1)² − 3(x − 1) + 2
    = x² − 2x + 1 − 3x + 3 + 2
    = x² − 5x + 6
    Now we can find the zeroes (x-intercepts), when f(x) = 0:
    x² − 5x + 6 = 0
    (x − 2)(x − 3) = 0
    x₁ = 2 ∨ x₂ = 3
    But that wasn't the question.

  • @nimmira
    @nimmira Рік тому +7

    I remember back in my college days, in some books we would solve such problems by "shifting" instead of assigning a dummy variable or changing the letter; Something like: Let x → x-1 (and thus converting x+1 to x); Essentially the same but I think the terminology is somewhat less confusing than when introducing a new variable (or just a dummy letter to withhold the variable) and then assigning it back to "x"

    • @lexyeevee
      @lexyeevee Рік тому +3

      honestly i think i prefer the direct substitution, since it better emphasizes the idea that "x" isn't special, it's just a name we're using to refer to the same number several times, and we can change it whenever we like

    • @davidmelville5675
      @davidmelville5675 Рік тому +2

      A sentence like "Let x -> x-1" gives me the heebies.

    • @CUSELİSFAN
      @CUSELİSFAN Рік тому +1

      after a few tries, I came to the same method. It is easier to understand conceptually, but more prone to making arithmetic mistakes.

  • @sameermansour1659
    @sameermansour1659 Рік тому

    Such amath presentation is so clear and interesting ! Thanks alot sir .

  • @WahranRai
    @WahranRai 4 місяці тому +1

    method 3 : replace directly x by x-1 --->
    f(x-1+1) = f(x) = (x-1)^2 - 3(x-1) + 2 = x^2 - 2x + 1 -3x +3 +2 ---> f(x) = x^2 -5x +6

  • @afaqahmed2651
    @afaqahmed2651 Рік тому +1

    Your style is very impressive also you have command.😊

  • @edmondscott7444
    @edmondscott7444 Рік тому +2

    Very well explained sir.

  • @abumarwan6
    @abumarwan6 Рік тому

    I love explaining mathematics - thanks for your efforts

  • @Karan_Baniya
    @Karan_Baniya Місяць тому

    Love the passion of the mann❤

  • @princekissi7691
    @princekissi7691 Рік тому +2

    You can also represent f(x) by ax^2+bx+c. Then substitute x+1 into the variable x, simplifying would give you ax^2+(2a+b)x+(a+b+c). By comparing it to f(x+1) we can find the values of a, b, and c

    • @aavalos7760
      @aavalos7760 Рік тому

      first you'd need to prove f has to be a quadratic formula.

  • @celilkursaddereci6861
    @celilkursaddereci6861 Рік тому

    your manner of looking at the screen is really funny and you are great lecturer.

  • @catten8406
    @catten8406 4 місяці тому

    6:22 I got this same answer by thinking about it as a horizontal translation, and then shifting it back to f(x)
    If you're given f(x+1) (which is f(x) shifted 1 unit to the left), you can shift it back 1 unit to the right and get f(x)!

  • @99bobcain
    @99bobcain 10 місяців тому

    Excellent presentation. So clear.

  • @bengzjuggernaut6771
    @bengzjuggernaut6771 Рік тому

    I like your teaching skill. Thanks.

  • @bikashmohanty3950
    @bikashmohanty3950 9 місяців тому

    What a nice Funda sir!!!!? Amezing.....

  • @prof.fabioleonardo-enemifs7808
    @prof.fabioleonardo-enemifs7808 9 місяців тому

    Fantastic explanation!!!!
    Congratulations!!!

  • @KeithRowley418
    @KeithRowley418 9 місяців тому +1

    Excellent teaching

  • @marcobenatar7638
    @marcobenatar7638 10 місяців тому

    I personally prefer Method 1. Thanks, very well explained.

  • @josejuncol
    @josejuncol Рік тому

    An incredible simple class!

  • @markTheWoodlands
    @markTheWoodlands Рік тому +2

    Thanks!

  • @renluyenmontoan
    @renluyenmontoan Рік тому

    I like your way of communication!❤❤❤

  • @acre4406
    @acre4406 5 місяців тому

    I needed this, thank you!!! 😅

  • @netravelplus
    @netravelplus 10 місяців тому

    Maths is fun. You make it interesting.

  • @ingorichter649
    @ingorichter649 Рік тому +1

    Method 1 confuses me, method 2 I understand, thanks 👍

  • @KakdeG
    @KakdeG 9 місяців тому

    Lovely man. Enjoyed

  • @Hardman7
    @Hardman7 10 місяців тому

    Your are fantastic coach!

  • @AbouTaim-Lille
    @AbouTaim-Lille Рік тому +2

    f(g(X)) =h(X). to calculate f(X) we need to calculate g-¹ supposing that g does have an inverse. So. If u= g(X) then f(u) = hog-¹(u) = h(g-¹(u)).

  • @Tsarthak
    @Tsarthak Рік тому

    very beautifully explained very nice man

  • @akshadnimbarte
    @akshadnimbarte Рік тому +1

    This concept when I did it by myself took me ages to understand, the reason was I always got confused between the the two x. In the thing is that both that x are completely different! So change one to some other letter. Then your question would make a lot of sense

  • @FredFred-wy9jw
    @FredFred-wy9jw 9 місяців тому

    Nice explanation… after an PhD and nearly 40 years in industry I have qualms about the way we teach “substitute” … use the “t” substitution… or use your “u” substitution… I have, more than once, had graduate engineers stumble and insist a substitution cannot be used because there already is a “t” or “u” in the equation…. Just a thought

  • @TheRhythmOfMathematics
    @TheRhythmOfMathematics Рік тому

    Simple problem but good lesson. Thank you

  • @yduck999
    @yduck999 10 місяців тому +1

    nice very good thank u

  • @bortiz1951
    @bortiz1951 10 місяців тому

    Excelente. El metodo 2. Me aclaro la razón de la necesidad del cambio de variable en integración.

  • @mvr1950
    @mvr1950 9 місяців тому

    Excellent teacher

  • @tomgray8512
    @tomgray8512 Рік тому

    An excellent teacher

  • @surendrakverma555
    @surendrakverma555 10 місяців тому

    Very good. Thanks 🙏

  • @romeusilva7886
    @romeusilva7886 Рік тому

    Parabéns pelo trabalho, acompanho seu canal pelo Brasil. Continue legendando os videos em português. ❤

  • @umitserbestinsan3227
    @umitserbestinsan3227 10 місяців тому

    good..... Im 66 but continue learning still...

  • @nizogos
    @nizogos Рік тому +1

    Why don't we plug x-1 on the original function?It seems more intuitive than manipulating the expression to make the x+1 appear.

  • @renatooliveira5796
    @renatooliveira5796 9 місяців тому

    Great explanation

  • @gilblas5277
    @gilblas5277 10 місяців тому

    Excellent ,en plus le gars est très sympa !

  • @m.h.6470
    @m.h.6470 Рік тому +9

    Solution:
    f(x + 1) = x² - 3x + 2
    u = x + 1 |-1
    x = u - 1
    f(u) = (u - 1)² - 3(u - 1) + 2
    f(u) = u² - 2u + 1 - 3u + 3 + 2
    f(u) = u² - 5u + 6
    f(x) = x² - 5x + 6

  • @okarakoo
    @okarakoo Рік тому +3

    Nice video but I'd argue that the two methods are essentially the same: the 1st is a sort of "implicit" variable substitution, the 2nd is the classical, "explicit" variable substitution we all know and love. Other than that, nicely presented as always.

  • @devcoolkol
    @devcoolkol 11 місяців тому

    Dammit you explain it so smoothly.

  • @shravan8292
    @shravan8292 4 місяці тому

    This channel is beautiful

  • @alipourzand6499
    @alipourzand6499 Рік тому +1

    A third method would be the identification.
    f(x) = ax^2 + bx + c
    f(x+1) = a(x+1)^2 + b(x+1) +c
    = ax^2 + 2ax + a +bx + b + c
    = ax^2 + (2a+b)x + a + b + c
    By identification:
    a = 1, 2a + b = -3, a + b +c = 2
    b = -5, c = 6
    f(×) = x^2 - 5x + 6

  • @mdasifeqbal2323
    @mdasifeqbal2323 Рік тому +3

    Very short-cut method.
    Alternatively, we can replace x by (x-1) to find f(x).

  • @albertlondres4455
    @albertlondres4455 10 місяців тому

    When mathematics became art ❤

  • @McAluso
    @McAluso Рік тому

    Whenever I see functions I freak out. But today I see light ❤❤❤.

  • @SidneiMV
    @SidneiMV Рік тому

    I have solved using method 2 but method 1 is very interesting.

  • @mitinjemaziku
    @mitinjemaziku 2 дні тому

    Amazing

  • @AbdulrasheedBala-lo4mc
    @AbdulrasheedBala-lo4mc 11 місяців тому +1

    f(x+1)=x²-3x+2
    Replace all x with (x-1)
    f(x-1+1)=(x-1)²-3(x-1)+2
    f(x)=x²-2x+1-3x+3+2
    f(x)=x²-5x+6✓
    This is what we call CLAY MOLDING TECHNIQUE

  • @user-haruka2005
    @user-haruka2005 Рік тому

    Does the second method means we substitute the inverse function of y=x+1

  • @vitotozzi1972
    @vitotozzi1972 10 місяців тому

    I repeat it once again: it cannot be explained in a clearer way. Congratulation Newtons

  • @fabiancullquicondor8327
    @fabiancullquicondor8327 8 місяців тому

    Amazing! Thank you

  • @salvemoslasdosvidasargentina

    formidable teacher. where are you from? your English pronunciation is excellent. thank you very much.

  • @lazaresokoundo8619
    @lazaresokoundo8619 10 місяців тому

    Yes!!! Congratulations !!

  • @notsm2197
    @notsm2197 9 місяців тому

    I would also go from m2 but first differentiate it then put t=x+1
    It would be little bit quicker since you don't have to square

  • @zoran.grujic
    @zoran.grujic 9 місяців тому

    My method:
    Assume f(x) = a x^2 + b x + c.
    Then f(x+1) = a x^2 + (2 a + b) x +a + b + c == x^2 - 3x + 2.
    So a=1, 2 a + b = -3 and a + b + c = 2.
    We get a = 1, b = -5 and c = 6.
    f(x) = x^2 -5x + 6.

  • @maxime9636
    @maxime9636 Рік тому

    Nice❤👍🙏🙏🙏

  • @pizza8725
    @pizza8725 Рік тому +2

    If f(x+1)=x²-3x+2 then wouldnt f(x)=(x-1)²-3(x-1)+2 and wouldnt this be a eazier way to solve this

  • @lazaresokoundo8619
    @lazaresokoundo8619 10 місяців тому

    Super❤❤❤

  • @profabhishekiitr569
    @profabhishekiitr569 Рік тому

    Excellent

  • @mohasalhi1587
    @mohasalhi1587 Рік тому

    Mercie explications extraordinaire

  • @rotimishaibu6790
    @rotimishaibu6790 Рік тому

    Fantastic

  • @ragiharshithreddy
    @ragiharshithreddy Рік тому

    It is so cool sir

  • @CloudBushyMath
    @CloudBushyMath 9 місяців тому

    Method of Masters ✍

  • @marcovidal2810
    @marcovidal2810 9 місяців тому

    Te felicito claro,.consiso preciso

  • @jacquisiqueira7443
    @jacquisiqueira7443 10 місяців тому

    That was great, thanks!

  • @taschwei
    @taschwei Рік тому

    Just substitute the x in the right equation part by (x-1). That would leave you immidiately with the right solution.