Canonical correlation analysis - explained

Поділитися
Вставка
  • Опубліковано 19 січ 2025

КОМЕНТАРІ • 46

  • @knightzhang8387
    @knightzhang8387 2 роки тому +11

    Wow, this is by far the only tutorial demonstrating a clear description of the CCA, and how to compute it. Thanks!

  • @tsunghanhsieh9085
    @tsunghanhsieh9085 2 роки тому +3

    Oh My! This is the best explanation about CCA I have ever seen.

  • @Tom-sp3gy
    @Tom-sp3gy 4 місяці тому +2

    Beautiful explanation … 3 min into the video and I understood the whole gist of CCA! Thankyou so much !!! Whoever said that complicated things cannot be explained simply?

  • @joshuagervin2845
    @joshuagervin2845 Рік тому +1

    Thanks!

  • @golshanshakeebaee868
    @golshanshakeebaee868 2 роки тому

    Thank you very much for your clear explanation. Just wanted to say your voice is very similar to Professor Schmidt. Keep up the good work. best regards :)

  • @khushpatelmd
    @khushpatelmd 2 роки тому

    You are the best stats professor!! Thanks so much

    • @tilestats
      @tilestats  2 роки тому

      Thank you!

    • @ernestamoore4385
      @ernestamoore4385 2 роки тому

      @@tilestats Excellent video. One question though: How to choose whether to use CCA or PLS? The difference is that PLS maximises the covariance between the datasets whereas CCA maximises the correlation.

  • @EashwarMurali
    @EashwarMurali Рік тому

    Is there further theory behind the equation introduced at 6:25? Can you suggest some reading material for concrete proofs?

    • @tilestats
      @tilestats  Рік тому

      Check wiki
      en.wikipedia.org/wiki/Canonical_correlation

  • @yaweli2968
    @yaweli2968 8 місяців тому

    Can you share a link to a nice multivariate linear regression dataset with at least 4 dependent variable and at least 2 outcome variables if possible?

  • @milrione8425
    @milrione8425 Рік тому +1

    So well explained!! Thank you!!

  • @mgpetrus
    @mgpetrus 6 місяців тому

    Thanks for your very didatical demostration. I was wondering why you didn't mentioned about the data transformation and the data standarlization previous start the analysis, mainly because the blood preasure and body size have distinct scales.

    • @tilestats
      @tilestats  6 місяців тому

      Yes, you can standardize the data but you will get the same correlations with un-standardized data because you later on instead standardize the scores as I explain at 10:56.

  • @Davide-yg5ny
    @Davide-yg5ny 2 роки тому +1

    you're a life-saver

  • @KS-df1cp
    @KS-df1cp 2 роки тому

    What would have happened if we did not take inverse at 6:46 timestamp? What if we multiply all of them as it is? Thank you.

  • @Bommi-oz7rs
    @Bommi-oz7rs 8 місяців тому +1

    Is anybody having step by step notes for this sum.. Pls reply

  • @aakashyadav1589
    @aakashyadav1589 2 роки тому

    Your stats videos are great.

  • @杨佳祎-t3f
    @杨佳祎-t3f Рік тому +1

    Thanks a lot! Very helpful!

  • @mdmahmudulhasanmiddya9632
    @mdmahmudulhasanmiddya9632 2 роки тому

    U r very knowledgeable person.

  • @dr024
    @dr024 8 місяців тому +1

    very clear! Thank you =)

  • @nadhilala
    @nadhilala 2 роки тому

    thank you so much for your explanation! it is very helpful

  • @shaoneesaha6073
    @shaoneesaha6073 5 місяців тому

    Despite of negative coefficient value/ taller person has lower bp/heavier person has high bp. This is not clear to me. I also faced such type of result in CCA but cant interpret the result. Would anyone plz define me.

    • @tilestats
      @tilestats  4 місяці тому

      This is just a small data set so do not draw any biologic conclusion from it.

  • @ernestamoore4385
    @ernestamoore4385 2 роки тому

    Excellent video. One question though: How to choose whether to use CCA or PLS? The difference is that PLS maximises the covariance between the datasets whereas CCA maximises the correlation.

    • @tilestats
      @tilestats  2 роки тому

      I would use CCA for correlation and PLS for regression. I have a video about PLS as well:
      ua-cam.com/video/Vf7doatc2rA/v-deo.html

  • @ebrahimfeghhi1777
    @ebrahimfeghhi1777 Рік тому

    Great lecture

  • @zk1560
    @zk1560 2 роки тому

    Hi, I tried to reproduce what you are showing here in python but I got totally different results. The calculations that you are showing are on the numbers shown in the video or are you using something else as input?

    • @tilestats
      @tilestats  2 роки тому

      Yes, I used the example data in R. What is your output?

  • @Edward__1e
    @Edward__1e 6 місяців тому

    Don't miss out on a chat with Binance's CEO about the future - exclusive interview

  • @JsoProductionChannel
    @JsoProductionChannel 2 роки тому +1

    Thank you

  • @youssefsamernarouz8608
    @youssefsamernarouz8608 Рік тому

    Thank youuuu

  • @halilibrahimakgun7569
    @halilibrahimakgun7569 9 місяців тому

    Eigen vectors for Rx and Ry are wrong, different results calculated. Are yu sure about calculating eigen value of Rx and Ry. First and second eigen vectors and eigen values places are different.

    • @tilestats
      @tilestats  8 місяців тому

      If you run the following code in R for, for example, Ry,
      mat=matrix(c(-0.164,0.430,
      -0.322,0.722),2,2)
      eigen(mat)
      you will get the following eigenvectors and eigenvalues:
      $values
      [1] 0.51939343 0.03860657
      $vectors
      [,1] [,2]
      [1,] 0.4262338 -0.8463918
      [2,] -0.9046130 0.5325607
      Please share your own calculations so that I can have a look.

    • @halilibrahimakgun7569
      @halilibrahimakgun7569 8 місяців тому

      Ry = [ -0.164 -0.322
      0.430 0.722]
      But your given code in R ,
      is transpose of this matrix.
      You give input matrix false. Or should we take transpose before taking eigenvectors? @tilestats

    • @tilestats
      @tilestats  8 місяців тому

      No, you fill in the numbers by column in R. If you like to fill in by rows instead, you do like this, which will give the exact same matrix and eigenvectors:
      mat=matrix(c(-0.164,-0.322,
      0.430,0.722),2,2,byrow = TRUE)
      eigen(mat)

    • @halilibrahimakgun7569
      @halilibrahimakgun7569 8 місяців тому

      @@tilestats A = np.array([[-0.164, -0.322], [0.430, 0.722]])
      # Calculate eigenvalues and eigenvectors
      eigenvalues, eigenvectors = np.linalg.eig(A)
      print("Eigenvalues:", eigenvalues)
      print("Eigenvectors:", eigenvectors)
      This code prints reverse of it,
      I dont know why there is difference in python

    • @tilestats
      @tilestats  8 місяців тому

      The way you rotate the data is arbitrary so it does not matter if you get the reverse values. The eigenvalues are correct, right?