11. Recursive Feature Elimination | Feature Selection |

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ • 7

  • @gabrieltorres6484
    @gabrieltorres6484 2 місяці тому +1

    Very straight foward. Great tutorial!

  • @gordonfang0409
    @gordonfang0409 10 місяців тому +1

    Very clear! Thanks for sharing!

  • @rajeshwarpaulgaming3338
    @rajeshwarpaulgaming3338 Рік тому +1

    so in RFE we subset each feature and then rank them, and then eliminate feature based on that?

  • @Gingeey23
    @Gingeey23 8 місяців тому

    How is RFE applied to LSTMs or more involved ML models? I'm guessing this process would be very computationally expensive when dealing with large models, large datasets and extensive feature engineering? Or could we use a reduced model/dataset to identify effective features first, then apply to our actual model? thanks - subscribed.

  • @weii321
    @weii321 Рік тому +1

    Is it a must to split data into x_train, x_test, y_train, y_test when using RFE?

    • @learnwithvichu
      @learnwithvichu  Рік тому

      For features selection you do not need to split the dataset into training and testing set.

    • @weii321
      @weii321 Рік тому +1

      Thank you for your answer@@learnwithvichu