Superfactorial

Поділитися
Вставка
  • Опубліковано 17 січ 2025

КОМЕНТАРІ • 412

  • @alexparadise6121
    @alexparadise6121 5 років тому +476

    For anyone wondering, the final results for 3$ is equal to 6 multiplied by itself:
    3,048,038,843,157,366,051,156,451,562,587,960,914,683,843,070,009,432,577,720,371,743,970,260,248,988,253,388,734,087,776,516,378,135,275,070,793,705,483,810,168,992,174,078,819,457,229,916,982,909,272,972,117,802,705,538,546,043,924,392,880,249,338,669,607,593,617,565,773,503,681,777,562,894,648,411,193,991,668,219,111,024,140,760,301,610,404,587,920,245,316,338,496,104,651,309,961,792,720,642,767,736,988,127,034,593,657,473,200,942,901,910,918,843,867,439,542,131,034,903,455,333,688,218,414,524,168,236,538,840,952,909,280,093,318,279,899,396,079,306,730,083,204,209,917,234,906,371,378,011,735,099,583,017,148,436,711,446,474,063,192,400,558,782,588,545,007,076,563,578,617,663,198,436,110,485,321,365,453,724,515,867,573,206,330,463,738,004,176,650,289,141,225,099,730,033,358,933,544,597,672,427,393,530,251,774,965,047,211,695,506,312,946,306,762,294,998,433,468,262,930,173,135,236,327,015,973,465,126,381,014,128,785,885,984,902,934,363,536,428,840,380,015,651,386,113,570,744,138,512,750,613,093,972,490,684,498,513,211,851,441,804,268,854,063,729,284,096,776,385,783,954,252,916,394,679,043,883,583,422,253,317,285,565,365,659,687,584,910,629,328,675,433,251,717,593,584,447,460,445,269,780,478,280,767,340,984,528,217,318,932,238,565,096,396,250,980,632,747,766,225,123,954,084,888,838,021,720,715,193,156,305,805,969,620,729,856
    Times.

    • @blackpenredpen
      @blackpenredpen  5 років тому +98

      Alex Paradise wow!!!! How did you do it? And this must be pinned!!!!!!

    • @peter-hm9iu
      @peter-hm9iu 5 років тому +5

      😇

    • @Sitanshu_Chaudhary
      @Sitanshu_Chaudhary 5 років тому +3

      Amazing

    • @itra7360
      @itra7360 5 років тому +20

      Programming

    • @prathmesh4662
      @prathmesh4662 5 років тому +81

      Wouldn't 3$ be 3! x 2! x 1! = 12 ?
      Also 6^6^6^6^6^6 should be 10^(10^(10^(10^36305.31580191888)))
      Or 6 multiplied by itself 10^(10^(10^36305.31580191888)) times, I don't get how multiplying 6 that many times (the small number you gave) will result in such a huge number such as 6^6^6^6^6^6.

  • @russchadwell
    @russchadwell 5 років тому +355

    n$ looks like an old code for a string variable to me. I am ancient and lost.

    • @mariobrito427
      @mariobrito427 5 років тому +16

      Yeah I thought the same :) Spent too much time coding in BASIC in my youth

    • @neilgerace355
      @neilgerace355 5 років тому +5

      You guys are lucky you had access to lowercase letters when you learned BASIC :)

    • @blackpenredpen
      @blackpenredpen  5 років тому +6

      Mário Brito you guys mean Visual Basic? If so, I did that too in high school long time ago

    • @russchadwell
      @russchadwell 5 років тому +6

      @@blackpenredpen how about basica from Microsoft, or worse TRS-80 BASIC from 1977. I also used a lot of QuickBasic

    • @That_One_Guy...
      @That_One_Guy... 5 років тому +1

      Just when i already started to learn programming in college lol

  • @alkankondo89
    @alkankondo89 5 років тому +45

    I need to ask my employer if I can have a "pay cut" to 3$. Mwahahahaaa!

    • @blackpenredpen
      @blackpenredpen  5 років тому +6

      alkankondo89 Hahahah!!

    • @user-vn7ce5ig1z
      @user-vn7ce5ig1z 5 років тому +3

      In a lot of countries (e.g. France), the currency symbol comes after the number, so this might backfire.

    • @DepFromDiscord
      @DepFromDiscord 5 років тому +1

      @@user-vn7ce5ig1z not in America 🇺🇸🇺🇸🇺🇸🇺🇸🇺🇸🇺🇸🇺🇸🇺🇸

    • @supercool1312
      @supercool1312 4 роки тому

      Kiwi yes it does, you just use it wrong

  • @hausinchiu5525
    @hausinchiu5525 5 років тому +283

    Me : How much does a diamond cost?
    Owner: 2019$
    Me: Wow what a deal!!😍😍
    (A few seconds later)
    Me: wait a minute!!!...😱😱

    • @funkysagancat3295
      @funkysagancat3295 5 років тому +21

      Indian dude counting rice grains on a chessboard: 😱

    • @blackpenredpen
      @blackpenredpen  5 років тому +52

      I think 3$ is enough to make me go 😱😱😱😱

    • @TheTdw2000
      @TheTdw2000 5 років тому +3

      Dollar signs are supposed to go before the value so you only have yourself to blame.

    • @That_One_Guy...
      @That_One_Guy... 5 років тому +5

      @@TheTdw2000 i think it's how the price is pronounced, the number first then "dollar"

    • @jingchen2188
      @jingchen2188 5 років тому +5

      blackpenredpen wait 3$ is equal to 6*2*1 why is that expensive

  • @pablofueros
    @pablofueros 5 років тому +67

    It's funny that 3$'s last digit is a 6

    • @dlevi67
      @dlevi67 5 років тому +6

      And the last 3 are 256 which is a power of 2

    • @oboplays3413
      @oboplays3413 5 років тому

      why

    • @pablofueros
      @pablofueros 5 років тому +21

      @@oboplays3413 6*6=36, which last digit is 6. Keep multiplying by 6 and you'll always get 6 as the last digit of your number!

    • @oboplays3413
      @oboplays3413 5 років тому +4

      @@pablofueros that's actually pretty interesting

    • @VincentKun
      @VincentKun 5 років тому +5

      You can actually calculate the last digit of any big number as 3^4556789. Using modular arithmetic

  • @JB-ym4up
    @JB-ym4up 5 років тому +104

    Darn I was hoping for h(n$).

    • @TheBernuli
      @TheBernuli 5 років тому

      @@DudeinatorMC n equals 1. Nah

    • @cav94rojo
      @cav94rojo 5 років тому +1

      H(n$) vs H(n)$❓

  • @darkdelphin834
    @darkdelphin834 5 років тому +4

    I like how maths always keeps surprising you... After so many years of learning, it's a subject that's still interesting. Thank you for another great video

  • @alansmithee419
    @alansmithee419 5 років тому +12

    At least Sloane and plouffe's actually makes sense.
    Pickover seems to have just gone "BIG NUMBERS OHHHHHHHHHHHHHHHHHHHHHHHH"

  • @headlibrarian1996
    @headlibrarian1996 5 років тому +21

    Hyperfactorials look big but nevertheless grow a lot slower than TREE.

    • @Calisthenics-ef4gw
      @Calisthenics-ef4gw 5 років тому +3

      Head Librarian yeah it grows a heck of a lot slower than g. And g to tree is like a snail to the speed of light.

  • @nickulman9739
    @nickulman9739 5 років тому +46

    Isn’t the hyper factorial every term of the normal factorial to the tetration of 2?

    • @helloitsme7553
      @helloitsme7553 5 років тому +1

      Yup that's how it is defined

    • @decatessara5029
      @decatessara5029 5 років тому +2

      Is there a term that describes a single dimension of hyperoperation applied to factorials? As 3! Is 3x2x1 what would 3+2+1 be defined as?

    • @glass3894
      @glass3894 5 років тому +1

      @@decatessara5029 Well, you can use Gauss's addition formula for this, so you'd just end up with it being the same as a function f(x)=(x/2)(x+1)

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Glass No, you misunderstood his question. What he is asking is if there exists an operator sequence H(n, •) such that, for example, H(1, 3) = 3 + 2 + 1, H(2, 3) = 3·2·1, H(3, 3) = 3^2^1, etc. In other words, the second variable determines the order of the hyperoperator that is applied to all the terms, and the first variable determines the upper bound of the terms, while the lower bound is 1. To my knowledge, no such sequence has been studies.

    • @glass3894
      @glass3894 5 років тому

      @@angelmendez-rivera351 Ah ok, his question makes more sense now

  • @tam1ceyhun
    @tam1ceyhun 5 років тому +6

    In here (Turkey) it is 1.30 AM and a new video from blackpenredpen. I clicked to video, and listen...

    • @katarinakraus120
      @katarinakraus120 5 років тому +1

      In here (Germany) it's 23:36. Good night 😊🌃

    • @Ali-mf4sl
      @Ali-mf4sl 5 років тому +1

      Also me

    • @tam1ceyhun
      @tam1ceyhun 5 років тому +1

      @@katarinakraus120 Thanks, same for you :)

    • @tam1ceyhun
      @tam1ceyhun 5 років тому +1

      @@Ali-mf4sl We are night people 🌕🌕🌕

    • @djvalentedochp
      @djvalentedochp 5 років тому +1

      In Brazil it is 08:06 pm

  • @vikiv.1352
    @vikiv.1352 5 років тому +23

    Let's put euro sign € for Pickover's factorial. Then my salary will seem a lot better:D

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      Viki V. Actually, the notation 3$ is alright. BPRP was wrong in stating that the other definition uses the notation 3$. In reality, its 3!s.

  • @angelmendez-rivera351
    @angelmendez-rivera351 5 років тому +20

    While it is true that there technically were two definitions of the superfactorial proprosed in 1990, the first definition, denoted by n!s, or denoted by sf(n), which is equal to n!·(n - 1)!···2!·1! is the definition most mathematicians use. Clover's definition is typically called the suprafactorial, or the Clover factorial, or confusingly, the tetrational factorial, which is the name for another operation already. Also, the notation n$ is reserved for Clover's definition, it is never used for the smaller definition. As I said, the smaller definition actually has proposed notations sf(n) and n!s, which is what mathematicians tend to use.

    • @blackpenredpen
      @blackpenredpen  5 років тому +5

      Ah!! Thanks.

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 роки тому

      @DejMar I'm completely aware that Clover did not invent the definition of the large superfactorial. That is completely irrelevant to my post, though, since I never made any claims about who invented it, I merely addressed the operator by its commonly used name. In fact, the operation being described can be concisely defined as simply n$ = n!^^n! for all n, since tetration is defined for all natural bases and heights.
      Simon and Plouffe's definition is not a product of consecutive k^k terms, but rather consecutive k! terms. In other words, sf(n) is defined by sf(0) = 1 & sf(n + 1) = (n + 1)!·sf(n). The product of consecutive k^k terms is not the superfactorial, but the hyper factorial, denoted H(n), with the analytic continuation being the K function.

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 роки тому

      @DejMar Also, I know how repeated exponentiation and tetration works.

  • @alejandrojrodriguezrosado
    @alejandrojrodriguezrosado 5 років тому +3

    I'm trying to enjoy math for fun (I'm not good at it). You sir, are amazing at teaching, enjoying and helping me.

  • @44r0n-9
    @44r0n-9 5 років тому +3

    I am not sure if I'll ever need that in my life, but it's very cool.

  • @joshuahillerup4290
    @joshuahillerup4290 5 років тому +1

    And the nice thing about the hyperfactorial is the recursive definition works just fine for H(0).

  • @aceospades6570
    @aceospades6570 5 років тому +3

    2:24 but H(0) would give 0^0 which, although there are limits that approach 1, is undefined when trying to solve without limits. Why is it 1 in this case?

    • @dlevi67
      @dlevi67 5 років тому +2

      By definition, just like 0! is defined as 1

    • @SvenBeh
      @SvenBeh 5 років тому +1

      You could (and should) write H(n) using product notation: H(n) = product of k=1 to n over k^k. Then by definition H(0) would be an empty product, since starting at 1 you are already above the endpoint (namely 0). It is mathematically useful to define the empty product to be 1 and the empty sum to be 0, because the neutral element for multiplication is 1 (as in a*1 = a) and the neutral element for addition is 0 (a+0=a). You can think of the product sign as meaning: „start at the neutral element and multiply as many elements until you reach the upper bound.“ so if you already are above the upper bound, you do not multiply any elements, so your answer is the neutral element (1).
      Edit: fixed a typo

    • @JorgetePanete
      @JorgetePanete 5 років тому +1

      just like √(0), it's 0, of course, but it has no limit from the left in the real numbers

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      Ace O'Spades Most mathematicians define 0^0 = 1, so saying it is undefined is stretching it. Regardless, though, H(0) is not defined as 0^0. It is defined as the empty product. The empty product is 1.

    • @digitig
      @digitig 5 років тому +1

      Angel Mendez-Rivera [citation needed]. I'm not aware of *any* mathematicians who define 0^0 as 1, it leads to such a mess.

  • @user-hw7mj7lm6d
    @user-hw7mj7lm6d 5 років тому +2

    I can’t understand English.
    However, I can understand this beauty.
    I like mathematics very much!

  • @johnariessarza3622
    @johnariessarza3622 5 років тому +3

    I like this blackpenredpen. I love your videos, all of it. I'm from Philippines and always watching your amazing tutorial. Please notice me.

  • @REALSLIK
    @REALSLIK 5 років тому

    I love this channel for ridiculous maths I had to click

  • @romanbykov5922
    @romanbykov5922 5 років тому +5

    I like TREE(3), it's even bigger and raises even faster :)

  • @maxxx6970
    @maxxx6970 5 років тому

    All of these random UA-cam videos with no relevant information for my life are what I live for

  • @amanmahendroo1784
    @amanmahendroo1784 5 років тому

    I came up with superfactorial about 5 years ago (I was in 8th grade) and actually called it superfactorial too! Never really found much of a use for it so I scrapped the idea

  • @gghelis
    @gghelis 5 років тому +3

    But what is a super-hyper-ultra factorial?

  • @RedRad1990
    @RedRad1990 5 років тому +1

    Thank you BrendaWork for sponsoring this video
    Also, the dollar sign matters ;)

    • @shambosaha9727
      @shambosaha9727 5 років тому

      Pulling that work
      The famous multiple question
      The port and girl paradox

    • @shambosaha9727
      @shambosaha9727 5 років тому

      If you like to keep rolling the track

    • @shambosaha9727
      @shambosaha9727 5 років тому

      Brenda work slacks back from your pen

  • @NikitaMittcev
    @NikitaMittcev 5 років тому +4

    Those 2 definitions for super factorial give different answers, or am I missing something? For example by def.1:
    3$ = 3!*2!*1!=12

    • @schukark
      @schukark 5 років тому +1

      Эти определения от разных людей и ответы получатся разные

    • @anantbhushan.n.nagabhushan3052
      @anantbhushan.n.nagabhushan3052 5 років тому

      Yeah. So..

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +2

      Yes, although the notation for the first definition is not 3$, it's 3!s. I'm not sure why BPRP presented it otherwise.

  • @VibingMath
    @VibingMath 5 років тому +2

    Thanks man! My mind turns from REGULAR to SUPER HYPER after watching this video! Cool level: 2019$ 😎

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Mak Vinci Hahahhaha
      Btw, I really wonder they came up with all these. I can’t even calculate 3$ with the last definition lol

    • @VibingMath
      @VibingMath 5 років тому +1

      @@blackpenredpen Yes! Even wolframalhpa cannot handle 6^6^6^6^6^6, so crazy!

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Those numbers have more digits that there are elementary particles in the entire observable universe.

  • @BabaFroga
    @BabaFroga 5 років тому +1

    brushed my teeth, prepared for sleep, and then saw this notification... Read it as subfactorial and that's the reason I clicked on notif, hope I won't be disappointed, lmfao
    Edit: video was dope... Now show application of those in real life please :)

    • @BabaFroga
      @BabaFroga 5 років тому

      aha, yes ..wanted to say, pls more video on combinatorics and subfactorial, yolo

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      Been there, done that ua-cam.com/video/dH7kt-xAlRA/v-deo.html
      Thank you!!

    • @BabaFroga
      @BabaFroga 5 років тому

      @@blackpenredpen yeah, I have watched, huge fan of those, thanks to You, that's why I want more :) Also edited my main comment, Liked this video, would like to see application in real life for every of those super and hyper factorials :)

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      Baba Froga The only applications are analysis. That's about it. Idk why people assume applications exist for everything. 90% of math doesn't have applications besides doing more math

    • @BabaFroga
      @BabaFroga 5 років тому

      @@angelmendez-rivera351 oh wouldn't agree, you can always see great application for everything... lol even if it is more math, it will lead to somewhere.... anyways "more math" is still real life... lmfao, not imaginary or whatsoever^^

  • @Karanbrhm99
    @Karanbrhm99 4 роки тому

    Wish I had a teacher like you! 💖

  • @zhonglu989
    @zhonglu989 5 років тому +4

    0.5 super-factorial?

  • @policarpo4816
    @policarpo4816 5 років тому +41

    I was expecting something like n^(n-1)^(n-2)^...^2^1 lmao

    • @blackpenredpen
      @blackpenredpen  5 років тому +12

      Matteuz lolll that will be so cool

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +4

      Matteuz That already exists. It's called the "exponential factorial," or "expofactorial" for short. There is no agreed-upon notation, though, but the most common notation I have seen among googologists is n(!1), where n is the input and (!1) denotes expofactorial.

    • @policarpo4816
      @policarpo4816 5 років тому

      Angel Mendez-Rivera wow, that’s cool!

    • @U014B
      @U014B 5 років тому +2

      maybe notate it "nᵎ" or "n‽"

  • @romanhrj433
    @romanhrj433 5 років тому

    That’s why we put dollar symbol before the number to specify the cost

  • @brycesabin4787
    @brycesabin4787 5 років тому +1

    what are the uses for these operations?

  • @YellowBunny
    @YellowBunny 5 років тому +1

    I have seen the first kind of superfactorial befre but not the hyperfactorial or the double up arrow version.

  • @josephjackson1956
    @josephjackson1956 5 років тому +2

    As math progresses, coding will be more integrated into it

  • @michaelcrosby7715
    @michaelcrosby7715 2 роки тому

    Amazing. This reminds me of numberphile's video on Graham's Number. they used like 4 arrows i believe.

  • @skallos_
    @skallos_ 5 років тому +1

    I was quite surprised at that simple relation, I thought that surely the superfactorial and hyperfactorial grow much faster than that.

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Skallos They do grow very fast. They are just overshadowed by the suprafactorial, which is the second definition that BPRP gave for the superfactorial.

    • @skallos_
      @skallos_ 5 років тому

      @@angelmendez-rivera351 After watching Numberfile's video on fast growing functions, my expectations for those functions were quite high. They do grow fast, but not as fast as I thought.

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +1

      Skallos There are no studied functions that grow anywhere nearly as fast as Graham's function or the TREE function. The gap is humongous. It's the gap from 0 to ♾, and then some more.

  • @timmy18135
    @timmy18135 5 років тому

    Would you use it in superpoker

  • @duggydo
    @duggydo 5 років тому

    This is very cool BPRP! Will you be continuing with more big functions/operations? I would like to see them 100% Maybe fast growing hierarchry? :)

  • @dope_gadget
    @dope_gadget 5 років тому +2

    There is also primorial #n - product of first n prime numbers.

    • @blackpenredpen
      @blackpenredpen  5 років тому

      Krutoy Gadget
      Wow!!! I didn’t know about it. Thanks for letting me know and I will look into it

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Actually, I'm fairly certain it is n#, not #n.

    • @dope_gadget
      @dope_gadget 5 років тому

      @@angelmendez-rivera351 Yes, in Wikipedia it is n#, but in one book it was written #n.

  • @srmendoza
    @srmendoza 5 років тому

    Why is hyperfactorial of 0 equal to 1? At 2:22

  • @kamalabanerjee9852
    @kamalabanerjee9852 4 роки тому

    Amazing 😍. I know the superfactorial and hyperfactorial from the Google but I didn't see the relationship between them. This is wonderful ❤️

  • @JakubMikes23
    @JakubMikes23 5 років тому +2

    How would i write down a normal factorial but with only even numbers? Like n*(n-2)*(n-4)*...*2

    • @Green_Eclipse
      @Green_Eclipse 5 років тому +2

      There is a !! for odd numbers. For even numbers you can just factor out the 2 so 6*4*2 =2^3(3*2*1)
      So factorial for evens is just 2^n*n!

    • @JakubMikes23
      @JakubMikes23 5 років тому

      @@Green_Eclipse I haven't thought about that! Thanks :D

  • @CDolph296
    @CDolph296 5 років тому +6

    I’ve only seen this term in Yugioh lol.

  • @gregg4
    @gregg4 5 років тому

    Is there a practical need for super or hyperfactorials? Normal factorials are used in combinations, permutations, taylor seriers, etc.

  • @copperfield42
    @copperfield42 5 років тому +1

    holy moly , that second super factorial grow very quick, 6^6^6 already have 36306 digits
    that should be called ultrafactorial instead

  • @anilkumarsharma8901
    @anilkumarsharma8901 2 роки тому

    any app for it ???

  • @Henrix1998
    @Henrix1998 5 років тому +1

    Is there a name for n^(n-1)^(n-2)^...^3^2^1 ?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Henrix98 Yes. It is called the expofactorial, and it is sometimes denoted by n(!1), although there is no actual universally agreed upon notation.

  • @luciot8804
    @luciot8804 5 років тому +1

    Try to find the value of this summations:
    The sum of 1/k! with k=1 to infinity is ?
    The sum of 1/k$ with k=1 to infinity is ?
    The sum of 1/H(k) with k=1 to infinity is ?

    • @luciot8804
      @luciot8804 5 років тому

      The first one is easy: e, but there is a way to find the exact value of the other two ?
      In the second I got approximately 1,58683

  • @sukumarrakshit1714
    @sukumarrakshit1714 5 років тому

    Simply awesome

  • @sloppajoe9765
    @sloppajoe9765 5 років тому

    Why is the first definition different than the second?

  • @chrissydude1
    @chrissydude1 5 років тому +7

    It’s a very rough calculation but 3$ has a magnitude on the order of 10^10^10^36305. So needless to say, the super factorial grows very quickly

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      DragonFire17 yup, it’s some serious stuff!

  • @qcdiamond8292
    @qcdiamond8292 5 років тому

    2 is very special. 2$ (second form) is the same as H(2) or 2² or 2×2 or 2+2. Daaaaamn

  • @tobiasdelfs7866
    @tobiasdelfs7866 5 років тому

    What do you compute with super and hyper factorial?

  • @drewmichael3986
    @drewmichael3986 5 років тому

    I've seen all before! Are there any uses?
    Are there any extensions to the rationals/reals/negative integers? How about derivatives?

  • @Tomaplen
    @Tomaplen 5 років тому

    what is d(n$)/dn and dH(n)/dn?

  • @wavikle4495
    @wavikle4495 5 років тому

    Very Interesting!

  • @dackid2831
    @dackid2831 5 років тому +3

    I have to ask the question: are you planning on naming your next bunny factoreo?

    • @blackpenredpen
      @blackpenredpen  5 років тому

      I don’t own a bunny. That’s peyam’s bunny. But I sure will if I get one

    • @dackid2831
      @dackid2831 5 років тому +1

      @@blackpenredpen Oh, I saw a few videos with you and a punny. You were just hanging out with Dr. Peyam. My bad.

    • @dackid2831
      @dackid2831 5 років тому +1

      @@blackpenredpen Either way, one of you should name their bunny factoreo. It seems very fitting. 😁

    • @blackpenredpen
      @blackpenredpen  5 років тому

      Dacota Sprague yea definitely! I do want a bunny myself in the future. It’s so cute!

  • @JBaker452
    @JBaker452 5 років тому

    Nice. My mind is blown yet again :-)

  • @GoodSmile3
    @GoodSmile3 5 років тому

    What's the point of the last super factorial, if it's even impossible to calculate 3$?

    • @4snekwolfire813
      @4snekwolfire813 5 років тому

      What's the point of Tree?

    • @GoodSmile3
      @GoodSmile3 5 років тому

      @@4snekwolfire813 just to promote MrBeast of course!

  • @josephjackson1956
    @josephjackson1956 5 років тому +1

    Imagine Graham's number after seeing the 3$ example...

  • @gradecracker
    @gradecracker 5 років тому

    For the hyper factorial, isn't 0^0 indeterminate? You mentioned H(0) = 1, but from the formula 0^0 can be many things, like e, pi, etc...?

  • @IshaaqNewton
    @IshaaqNewton 5 років тому

    Keep letting us know this type of new concept! Please....

  • @mrbenwong86
    @mrbenwong86 5 років тому

    Is there any real application to these hyper-super-large number?

  • @mr.cauliflower3536
    @mr.cauliflower3536 5 років тому

    What is the use of super and hyperfactorials?

    • @vladimirjosh6575
      @vladimirjosh6575 5 років тому +1

      "To make You tube videos", said this channel's owner somewhere in the comments

  • @akasegaonkar
    @akasegaonkar 5 років тому

    Wait, just to be sure, the two forms of the superfactorial do not have the same meaning right? Like they can't be equated right

  • @Florian-ps1qv
    @Florian-ps1qv 5 років тому

    every single time I see these super powers and what not I feel like its made up lol

  • @theloganator13
    @theloganator13 5 років тому

    So which definition of n$ is bigger? And are there analytic continuations of n$ like the Gamma function for n!?

    • @blackpenredpen
      @blackpenredpen  5 років тому +2

      Logan Kageorge
      Definitely the one by Pickover

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Yes, there are analytic continuations for the hyperfactorial and for sf(n) = n!·(n - 1)!···2!·1!. There is no known analytic continuation for x$ = x!^^x!, mainly because there is no known, undebatable analytic continuation for x^^x, although this in the research and it seems to exist, so far.

  • @aneecraft2350
    @aneecraft2350 5 років тому

    Where is this applied? Or we don't do that here? Cuz factorials atleast have a use...

  • @qbetech4764
    @qbetech4764 5 років тому

    Hey bprp!! I have a question for you. Please answer this _/\_
    If n! has 17 zeros then what is the value of n?
    ( I know the thing about trailing zeros but this is about total number of zeros.)

  • @madaaz6333
    @madaaz6333 5 років тому

    It's beautiful!

  • @radubasturescu5798
    @radubasturescu5798 5 років тому

    Wait. Isn’t hyper factioral smaller than super factorial for all values greater and equalt to 4?

  • @zaidsalameh1
    @zaidsalameh1 5 років тому

    Hey, Can you do a video about the Inverse function of the Factorial (for all numbers which the original function is defined at?)

    • @zaidsalameh1
      @zaidsalameh1 5 років тому

      Like the Inverse of the Gamma/Pi functions

  • @Tymon0000
    @Tymon0000 5 років тому +2

    This looks like a Numberphile content topic ;d

  • @minewarz
    @minewarz 5 років тому

    Intuitively, superfactorial makes me think of something like:
    n$ = n^(n-1)^(n-2)^(n-3}^...^3^2^1

  • @IslandCave
    @IslandCave 5 років тому

    The second form of 3$ comes out to about 1.03144248E+28, or about 10.3 octillion, or we could just say about 10 thousand trillion trillion, or about 10 thousand trillion in the old British number system.

    • @IslandCave
      @IslandCave 5 років тому

      Wait a second is it supposed to evaulate left to right or right to left, because I could be wrong, if I was doing to operations in the wrong order.

  • @MathswithMuneer
    @MathswithMuneer 5 років тому +3

    Hi, I am a math teacher as well. can we collaborate.

  • @peter-hm9iu
    @peter-hm9iu 5 років тому +2

    Uses of super and hyper factorial

  • @daleftuprightatsoldierfield
    @daleftuprightatsoldierfield 5 років тому

    Are you going to change your name to blackpenredpengreenpen?

  • @GrandRezero
    @GrandRezero 5 років тому

    I would think there should be a factorial like this. [ 6^5^4^2^1 ] I mean that seems to me like the next logical step from multiplying in a decreasing consecutive fashion to doing it exponentially

    • @아앙-u7f
      @아앙-u7f 2 роки тому

      6^5^4^3^2^1 is equal to 6!1

  • @SuperCryptic9
    @SuperCryptic9 5 років тому +16

    When would you ever need a super or hyper factorial lol

    • @user-vn7ce5ig1z
      @user-vn7ce5ig1z 5 років тому +32

      When you want to make a Numberphile video but have no topic.

    • @gabriel7233
      @gabriel7233 5 років тому

      Yeah they doesn't seem useful

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому +3

      Gabriel Antas They are useful in combinatorics and physics.

    • @unfetteredparacosmian
      @unfetteredparacosmian 5 років тому

      They're used in defining certain mathematical constants iirc

    • @gabriel7233
      @gabriel7233 5 років тому

      @@angelmendez-rivera351 can you show me some examples? I've still haven't found one

  • @NotYourAverageNothing
    @NotYourAverageNothing 5 років тому

    Those definitions for n$ aren't equal, unless somehow 6^^6 = 12.

  • @xueyihon3648
    @xueyihon3648 5 років тому

    What about TREE factorial

    • @blackpenredpen
      @blackpenredpen  5 років тому

      Hmmmm maybe let’s not go there lol

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      As far as I am concerned, there is no function with this name. What would you define this as?

  • @emmeeemm
    @emmeeemm 5 років тому

    I propose naming the product n$ * H(n) as the "Ultra Factorial" of n.

  • @iongradinaru8774
    @iongradinaru8774 5 років тому

    H(0) shouldn't be undefined?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Ion Grădinaru Why should it be?

    • @iongradinaru8774
      @iongradinaru8774 5 років тому

      0^0 is undefined

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      Ion Grădinaru 1. No, it is not. Virtually every mathematician defines 0^0 = 1. This definition is basically required anyway, or else a lot of fields in mathematics fall apart. 2. H(0) is not identical to 0^0 in expression. H(n) is equal to the product of k^k with k running from 1 to n. So it would be impossible for 0^0 to show up: H(0) is simply the empty product, which is 1.

  • @JanKowalski-zz8ef
    @JanKowalski-zz8ef 5 років тому

    What about "n?" ?

  • @gaier19
    @gaier19 5 років тому

    It is "easy" to expand the regular and super ! to the complex plane. The hyper! should be something like (Gamma(n+1))^(n+1)/n$ rigth?

  • @ChefGPTOfficial
    @ChefGPTOfficial 5 років тому

    So when doing superfactorial do we use the definition define by sloune and plouffe or pickover?? Or the result will be the same ( which i dont think so ) ?? Thanksp

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 років тому

      batu rock The definition by Sloune and Plouffe is the definition 99% of mathematicians who work with this thing use. So that's the definition to go with, and the notation is n!s, where s just means "super." The second definition of the super factorial, the n$ = n!^^n! is sometimes called the suprafactorial by said mathematicians, or just the Clover factorial.

  • @abaraigamer8814
    @abaraigamer8814 Рік тому

    Lucky that it uses only the tetration and not the Nth operation

  • @alansmithee419
    @alansmithee419 5 років тому

    Anyone know what the ? Function is. I've never been able to find it.

    • @blackpenredpen
      @blackpenredpen  5 років тому

      You mean the question mark function? I have seen it before it’s a very weird thing. Lol

    • @alansmithee419
      @alansmithee419 5 років тому

      @@blackpenredpen yes, all I know is it grows very quickly, aside from that I have no clue as to what it does.

  • @jarchive4267
    @jarchive4267 5 років тому

    Isn't the first súper factorial the same as n!^1*(n-1)^2*(n-2)^3...*3^(n-2)*2^(n-1)*1?

  • @lostwizard
    @lostwizard 5 років тому +1

    Now we need H(tree(3))
    Or maybe not.

    • @cloud-w2v
      @cloud-w2v 5 років тому

      Try (H(H(tree(3))))^H(tree(3))

  • @josevidal354
    @josevidal354 2 роки тому

    The number of digits of the number of digits of the number of digits of the number of digits (4 times) of 3$ is 36,306. A very Big number

  • @michaelempeigne3519
    @michaelempeigne3519 5 років тому +1

    I have seen the hyperfactotial but not the superfactorial.

  • @pratibhajain404
    @pratibhajain404 5 років тому

    Solve integration of e^x×logx and sin^1/3 x

  • @howtomaths8560
    @howtomaths8560 5 років тому +1

    I have here your greatest challenge, one which I don’t believe you can complete
    Integrate (tanX)^(4/5)
    Good luck

    • @blackpenredpen
      @blackpenredpen  5 років тому +1

      That’s very easy. Go watch all my videos first as a pre req then I will do that for you. : )

    • @howtomaths8560
      @howtomaths8560 5 років тому

      blackpenredpen if I said I referenced your UA-cam channel as one of my maths inspirations on my university application to study maths at Cambridge would that do it?

    • @blackpenredpen
      @blackpenredpen  5 років тому +2

      How to Maths
      Firstly, I wish you the best luck and thank you, I feel very honored when I know you mentioned me on your college application.
      Secondly, I just did that on WFA and took me only 5 seconds www.wolframalpha.com/input/?i=integral%20of%20%28tan%28x%29%29%5E%284%2F5%29
      Thirdly, after seeing the answer... I would rather do another 100 integrals (not including any radical of tan or cot) than doing that one integral lol.

    • @howtomaths8560
      @howtomaths8560 5 років тому +1

      blackpenredpen
      Thanks, I really appreciate it
      I mainly wanted to see if you could even start to attempt it as I would have no clue, I was watching your cube root of tan video and thought “I like this, but is there harder”, and tried some combinations and that monstrosity popped out, if you were willing to put multiple hours into it, do you think you could do it?

    • @blackpenredpen
      @blackpenredpen  5 років тому +2

      How to Maths
      Well, the killer parts are the factorings and the partial fractions! You can take a look at Chester’s video on the integral of 1/(x^5+1) ua-cam.com/video/nXn2qkY_S3s/v-deo.html I think u will like it.

  • @tomasruzicka9835
    @tomasruzicka9835 5 років тому

    But is there some convinient way to say: "/sum_{k=1}^{n} k"

    • @philipphoehn3883
      @philipphoehn3883 5 років тому +1

      "n*(n+1)/2",
      "1+2+3+...+n",
      "n+1 choose 2",
      or most conveniently just "the nth triangular number"

    • @tomasruzicka9835
      @tomasruzicka9835 5 років тому

      @@philipphoehn3883 thank you :-)

  • @nacholopez7348
    @nacholopez7348 5 років тому

    Ok cool but what do I do with this now?

  • @will2see
    @will2see 5 років тому

    Overflow occurred in computation.

  • @assassinosoldato92
    @assassinosoldato92 5 років тому

    Amazing