Complex analysis: Maximum modulus principle

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 14

  • @johnchessant3012
    @johnchessant3012 3 роки тому +13

    Another amusing application of m.m.p. that I read in Tristan Needham's "Visual complex analysis":
    Which point inside a square maximizes the product of distances to the four vertices? By m.m.p., it can't possibly be the center!

  • @mathstrek
    @mathstrek 3 роки тому +3

    At 3:53, you can only conclude: |f(z)| = |f(0)| for all z on C. Set f(z) = u + iv with u² + v² = c.
    To proceed, differentiate to get uu_x + vv_x = 0 and uu_y + vv_y = 0. Then Cauchy-Riemann says u_x = v_y and u_y = -v_x which gives us (u² + v²)u_x = 0 after some manipulation. If c ≠ 0, this forces u_x = 0 and similarly u_y = 0; thus v_x = v_y = 0 as well.

    • @rogierbrussee3460
      @rogierbrussee3460 3 місяці тому

      The average of points on the circle lies _within_ the circle unless you average over a constant.

  • @grog-i9m
    @grog-i9m 3 роки тому

    Nice video as always. You can also say that if f is non constant you can write f(z) = a_0 + a_n z^n + h.o.t. with a_0 and a_n both non zero. Then setting z = \lambda v for some well chosen "direction" v and small lambda, you get that |f(\lambda v)| > |a_0| = |f(0)|.

  • @tavishu
    @tavishu 3 роки тому +1

    At 13:19, shouldn’t the inequality be reversed? Because inside the r-disc, |z| = |f| /r .

    • @Alex_Deam
      @Alex_Deam 3 роки тому +1

      I thought that at first, but the wiki page on this proof is more explicit at this point i.e. note the g(z)

  • @xcl9189
    @xcl9189 3 роки тому +1

    15:34: where is this F(0)' =1/F inverse (0)' coming from ?

    • @tingxiangzou1107
      @tingxiangzou1107 3 роки тому +1

      I think from f compose f inverse is identity and the chain rule.

  • @ster2600
    @ster2600 3 роки тому +6

    We need U to be connected right?

    • @_photography_
      @_photography_ 3 роки тому +7

      Yeah, you can have separate constant values on separate connected components

  • @sewonhwang8564
    @sewonhwang8564 2 місяці тому

    the best

  • @migarsormrapophis2755
    @migarsormrapophis2755 3 роки тому

    yeee

  • @SG-kj2uy
    @SG-kj2uy 3 роки тому +5

    first comment!

    • @cycklist
      @cycklist 3 роки тому +11

      Your mother must be so proud.