LangChain Templates Tutorial: Building Production-Ready LLM Apps with LangServe

Поділитися
Вставка
  • Опубліковано 26 січ 2025

КОМЕНТАРІ • 16

  • @alexramos587
    @alexramos587 3 місяці тому +1

    Nice video.

  • @joseluisbeltramone599
    @joseluisbeltramone599 Рік тому +2

    Very good video. Thanks a lot for making it.

  • @sapnilpatel1645
    @sapnilpatel1645 Рік тому +1

    Nice tutorial.

  • @oluwaseunakinropo6318
    @oluwaseunakinropo6318 10 місяців тому

    Hii Pradip, as usual amazing content you put out there!
    I created a rag app which read each line from a txt file in the same folder, passes it through an api. The returned data is chunked and embedded then passed to the retrieval chain. how best do you think I can do this for large scale process i.e reading the original txt file one after the other, passing it to the LLM and then appending the result into a final file. I would appreciate some insight 🙏🏾

  • @abhineeth
    @abhineeth Рік тому +1

    Thank you for the quick tutorial, just wondering how this could be deployed on the web.

    • @FutureSmartAI
      @FutureSmartAI  Рік тому +1

      Hi in the video it has shown how to run it as fastapi which can be deployed. If you want to know how to deploy fastapi on cloud like aws you can watch ua-cam.com/video/7FVPn25mmEQ/v-deo.htmlsi=FAtDYHUduXugcN34

    • @abhineeth
      @abhineeth Рік тому

      @@FutureSmartAI Thank you.

  • @jillanisofttech2977
    @jillanisofttech2977 Рік тому +1

    great tutorial

  • @humayounkhan7946
    @humayounkhan7946 Рік тому

    Hi Pradip, how do we make the input document dynamic? meaning if its deployed on a web app, how can someone just input their own documents and the web app would be able to answer based on those new documents instead of something pre-loaded, do we require another API/cloud storage etc?

    • @FutureSmartAI
      @FutureSmartAI  Рік тому

      We can store all uploaded docs in folder and load docs from that folder. If each user only wants to ask questions to their on files it means you need to create seperate index for each user or better when insert doc in vector database add user id in metedata so when that user asks question you only fetch doc which has metadat containing that user id

  • @kaikai7702
    @kaikai7702 10 місяців тому

    how to add memory in langchaian sever?

    • @FutureSmartAI
      @FutureSmartAI  10 місяців тому

      In this video I have show how to add memory to chain ua-cam.com/video/fss6CrmQU2Y/v-deo.htmlsi=2QWgHBkJ7eutw-vm

  • @suryakothamagiclist
    @suryakothamagiclist 11 місяців тому

    Hello Pradip, What is the best way to get in touch with you?

    • @FutureSmartAI
      @FutureSmartAI  10 місяців тому

      You can message me on LinkedIN.

  • @mohanvishe2889
    @mohanvishe2889 9 місяців тому

    👍