Numerical Solution of 1D Heat Equation Using Finite Difference Technique

Поділитися
Вставка
  • Опубліковано 8 лис 2024

КОМЕНТАРІ • 47

  • @shaami-1234
    @shaami-1234 8 місяців тому

    I''m really thankful for all of your videos. very nicely explained everything. please upload more videos

  • @KM25263
    @KM25263 2 роки тому +4

    Nice work. But I am confused as I think the x and y axis should be swaped with each other and it would also make more sense

  • @pakarmyisizindabad6206
    @pakarmyisizindabad6206 2 роки тому +1

    Thanks sir, got same question today in assignment :)

  • @apuham6268
    @apuham6268 Рік тому

    Can you say something about Allen Cheng scheme? And about flux boundary conditions, when derivatives is used?

  • @ahmedzaki3119
    @ahmedzaki3119 3 роки тому +1

    Welcome back bro

  • @wcaleb5891
    @wcaleb5891 3 роки тому +1

    Thank you so much for the video. If possible, could you explain why when s

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому +2

      Yes, there is a mathematical proof that why s should be less than half, but it is hard to explain in comment, maybe I can explain in the beginning of next video

    • @wcaleb5891
      @wcaleb5891 3 роки тому

      @@abolfazlmahmoodpoor_ That would be great! I really want to know the idea behind it. Thank you so much for the response. Your videos are amazing! They saved my days!

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  8 місяців тому

      @@wcaleb5891 check this out please t.me/Abolfazl_Mahmoodooor

  • @fp9760
    @fp9760 3 роки тому +1

    Excellent 👍👍

  • @aichatouhami8467
    @aichatouhami8467 Рік тому

    thank you so much

  • @mohitpatle6423
    @mohitpatle6423 2 роки тому

    sir, how to solve 1d transient heat conduction problem having non-dimenssionlized GE. ?

  • @Pedritox0953
    @Pedritox0953 3 роки тому

    Very interesting

  • @chamimsttw2290
    @chamimsttw2290 Рік тому

    Can you explain for Roshental's equation in matlab sir? thanks

  • @nonato7853
    @nonato7853 Рік тому

    Hello teacher! Let's say I had the initial condition UN(x,0)=25°C with boundary conditions non-homogeneous: UN(L,t)=500°C and UN(0,t)=100°C. How would I define this in the program? If I do:
    UN=zeros(nx,nt);
    UN(:,1)=25;
    UN(1,:)=100;
    UN(end,:)=500;
    Would it be correct? I need this for a university program

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  Рік тому +1

      I think yes, these definitions for BCs and IC are true

    • @nonato7853
      @nonato7853 Рік тому

      @@abolfazlmahmoodpoor_
      tic
      clc
      clear all
      nx=100; #pontos na malha de espaço
      nt=500; #pontos na malha de tempo
      alfa=17.094*10^-6;
      L=0.5; #final da barra
      tf=50; #tempo final
      t0=0; #tempo incial
      L0=0; #inicio da barra

      dx=(L-L0)/(nx-1);
      dt=(tf-t0)/(nt-1);
      #FO

  • @WaqarAli-ir9fc
    @WaqarAli-ir9fc 2 роки тому

    Respect sir were you not used boundary conditions in the numerical solution?

  • @toufeeqsiddique7520
    @toufeeqsiddique7520 3 роки тому +1

    Hi ,,
    How to solve the same equation if there's a term infront of Uxx( right hand sight of the equation) like = C^a ?

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому

      If C^a is known just insert the value of C^a at each point of mesh grid to calculations.

    • @toufeeqsiddique7520
      @toufeeqsiddique7520 3 роки тому

      @@abolfazlmahmoodpoor_ does C^a make the equation nonlinear?

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому

      @@toufeeqsiddique7520 If C^a is linear no, if it is so, yes. Moreover, try to make your PDE in dimensionless form to avoid numerical instability.

    • @toufeeqsiddique7520
      @toufeeqsiddique7520 3 роки тому

      @@abolfazlmahmoodpoor_ so the basis to solve this equation in finite difference method for both linear and nonlinear is same?

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому +1

      @@toufeeqsiddique7520 It's possible to solve with other method like finite element method, but in any nonlinear case you should linearize the equation some how.

  • @sofy794
    @sofy794 Рік тому

    Hello sir i want to descritize équation of mass transfert called solution-diffusion with finite différence method
    J=- A∆C this for soluté transport
    J=-B(∆p-∆π) this for solvent transport( water)

  • @gaurav-ps3kc
    @gaurav-ps3kc 2 роки тому

    can u solve this equation using implicit method and crank nicolson method

  • @altalhi2012
    @altalhi2012 3 роки тому

    Hi, I have a question is the crank nicolson scheme has the same step?

    • @altalhi2012
      @altalhi2012 3 роки тому

      Actually, I am trying to solve heat equation by using Crank nicolson method and I need your support
      Best Regards

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому

      In crank- nicolson scheme qurant number (s factor in video) could be one and the code will be stable.

  • @shahabmotallebi1557
    @shahabmotallebi1557 2 роки тому

    سلام عالیه

  • @asantewaapresence1009
    @asantewaapresence1009 3 роки тому

    Thank you, kindly do thet of 3d.

  • @ljlbarca
    @ljlbarca 3 роки тому

    How would we solve the same problem using backward difference instead ?

    • @deidsondjp
      @deidsondjp 2 роки тому

      You need to solve a system of algebric equations, usually through the Gauss-Seidel Method.

  • @Srinivasa-no-eqn-without-god
    @Srinivasa-no-eqn-without-god 3 роки тому +1

    Sir it is one dimensional heat equations

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому

      In one sense it is one dimensional in space, you are absolutely right, if we consider time as another dimension, it is two dimensional, just two variables, one space another time

  • @shivaraghav4434
    @shivaraghav4434 3 роки тому

    what to do if we want to do for 2d unsteady?

    • @shivaraghav4434
      @shivaraghav4434 3 роки тому

      with x , y,and t

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому

      Shiva, It is too complicated to explain in a comment :D, try to simplify problem for yourself. It depends on boundary and initial conditions. You can solve it even analytically. I will try to make a video about it

    • @shivaraghav4434
      @shivaraghav4434 3 роки тому

      @@abolfazlmahmoodpoor_ thanks

  • @Larayu-k9i
    @Larayu-k9i 3 роки тому

    Welcom
    Need Fokker Planck equation solution finite difference and how to find errors geometrical and graphical

    • @abolfazlmahmoodpoor_
      @abolfazlmahmoodpoor_  3 роки тому

      In order to find error you need to have analytical solution, if you don't have it, you should know every thing about parameters and conditions that reduce calculation's error. Honestly I didn't saw this equation. But in future I will try to provide a video on this topic.