Ali Ghodsi, Lec [2,1]: Deep Learning, Regularization

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 14

  • @Nakameguro97
    @Nakameguro97 3 роки тому

    Excellent exposition! This is the first place I have found on YT that explains (through a derivation) why regularization terms are ADDED to the objective function.

  • @siddharthsvnit
    @siddharthsvnit 6 років тому +5

    10:05 start here

  • @quirkyquerty
    @quirkyquerty 8 років тому +6

    starts at 9.47

  • @sobitregmi31
    @sobitregmi31 4 роки тому

    At 34:23 why does expectation drops while summing over m points

  • @nazhou7073
    @nazhou7073 5 років тому

    thanks very very much, professor

  • @alisadeghi1370
    @alisadeghi1370 5 років тому

    ممنونم استاد

  • @sachinvernekar6711
    @sachinvernekar6711 8 років тому +1

    time: 33:26 How can co-variance be 0?

    • @ivishal1990
      @ivishal1990 8 років тому +1

      Covariance of independent terms is 0.
      Because the expected valueof XY i.e.
      E[XY]=E[X] * E[Y] if X and Y are independent.
      You can see it by looking at the formula of covariance and it gets zero.
      Intuitively covariance measures how 2 random variables effect each other(in a broad sense) and if they are independent then it becomes 0...
      Hope that helps...

    • @sachinvernekar6711
      @sachinvernekar6711 8 років тому

      co-variance of independent variables = E[(X-mean(x))(Y-mean(y))] will be zero.
      Point to note is at 33:26, the equation is : E[(y0 - f) (f^ - f)].
      Here f is not mean(y0) and f is not mean(f^), hence can't be 0.

    • @sachinvernekar6711
      @sachinvernekar6711 8 років тому

      But the equation is not exactly co-variance. If you are convinced about it being 0, could you please post the solution?

    • @priyamdey3298
      @priyamdey3298 5 років тому +3

      @@sachinvernekar6711 E[(yo - fo)(fo_hat - fo)] = E[yo*fo_hat] - E[yo*fo] - E[fo*fo_hat] + E[fo*fo]
      1st term: yo* E[fo_hat] = yo*fo (bcoz yo is a constant, and expected value of fo_hat should be fo)
      2nd term: E[yo*fo] = yo*fo (both are determinstic, not random)
      3rd term: E[fo*fo_hat] = fo*E[fo_hat] = fo*fo
      4th term: E[fo*fo] = fo*fo
      1st term cancels with 2nd, 3rd one cancels with 4th = 0

  • @ShahFahad-ez1cm
    @ShahFahad-ez1cm 4 місяці тому

    watched for 41 mins but havent understood the motive of this lecture except constant derivations

  • @charliean9237
    @charliean9237 8 років тому +1

    CS prof trying to do some stats... :P