Feynman's Technique DESTROYS this Tough Integral

Поділитися
Вставка
  • Опубліковано 7 лис 2024

КОМЕНТАРІ • 16

  • @mathnerd5647
    @mathnerd5647 Місяць тому +1

    Tremendous video!!!

    • @drpkmath12345
      @drpkmath12345  Місяць тому

      Thanks a lot my friend haha👍👍👍

  • @MrGLA-zs8xt
    @MrGLA-zs8xt Місяць тому +1

    Fantastic video professor

    • @drpkmath12345
      @drpkmath12345  Місяць тому

      Thanks a lot my friend for your support👍👍👍

  • @domedebali632
    @domedebali632 Місяць тому +1

    Great video prof.

  • @okoyoso
    @okoyoso 16 днів тому +1

    Would it also work if you changed the paramater x into tx inside the original tangent integral instead of doing a substitution first?

    • @drpkmath12345
      @drpkmath12345  14 днів тому

      Yup my friend! Thanks for sharing👍👍👍

    • @okoyoso
      @okoyoso 9 днів тому

      @@drpkmath12345Wait I think you get a x^2 csc(tx) integral if you do that. I think the substitution might be necessary to get a nicer derivative wrt t

  • @Min-cv7nt
    @Min-cv7nt Місяць тому +1

    I like Feynman trick

    • @drpkmath12345
      @drpkmath12345  Місяць тому

      Same here my friend haha👍👍👍

  • @humester
    @humester Місяць тому

    Too much pulled out of the hat. Unless you already know all this, it explains nothing.

    • @drpkmath12345
      @drpkmath12345  Місяць тому +7

      If you dont know about it, you better just learn instead of giving some attitudes. I clearly said I used Feynmans Technique on the title. Normal people would try learning something they dont know, not merely complain about not knowing about it.

    • @humester
      @humester Місяць тому

      @@drpkmath12345 Sorry! Did not mean to offend you. I was merely disappointed in that I was expecting you to explain the technique as you went along so that I might learn and understand.

    • @iqtrainer
      @iqtrainer Місяць тому +3

      @@humesterFeynman trick is to introduce a new parameter, get derivative of it using the parameter, and integrate it in easier terms like Dr PK did

    • @okoyoso
      @okoyoso 9 днів тому

      You can motivate the tangent substitution as a way to get rid of the trig functions. You still get an arctan, but that’s not bad because its derivative is an algebraic function.
      The main idea behind the Feynman technique is “what if I could differentiate just part of the integrand to simplify the integrand and then integrate the answer to get my result?” Introducing a new parameter t accomplishes this.
      The rest is just standard techniques.