Math Olympiad | A Nice Algebra Problem | VIJAY Maths

Поділитися
Вставка
  • Опубліковано 29 лис 2024

КОМЕНТАРІ • 3

  • @key_board_x
    @key_board_x 3 дні тому +1

    x³ = (x⁶ + 1)/702 → you can see that: x³ > 0 → x > 0
    a = x² + (1/x⁵) → we've just seen that: x > 0 → a > 0
    x⁵ = (x¹º + 1)/a
    a = (x¹º + 1)/x⁵
    a = (x¹º/x⁵) + (1/x⁵)
    a = x⁵ + (1/x⁵) ← memorize this result
    Restart
    x³ = (x⁶ + 1)/702
    x⁶ + 1 = 702x³
    x⁶ - 702x³ + 1 = 0
    Δ = (- 702)² - (4 * 1) = 492800 = 80² * 77
    x³ = (702 ± 80√77)/2
    x³ = 351 ± 40√77
    First case:
    x³ = 351 + 40√77 → suppose that:
    y³ = 351 - 40√77
    -----------------------------------------------------subtraction
    x³ + y³ = 702
    x³y³ = (351 + 40√77).(351 - 40√77)
    x³y³ = 351² - (40² * 77)
    x³y³ = 1
    xy = 1
    Identity:
    x³ + y³ = (x + y).(x² - xy + y²) → recall: x³ + y³ = 702
    (x + y).(x² - xy + y²) = 702
    (x + y).[x² + y² - xy] = 702
    (x + y).[(x + y)² - 2xy - xy] = 702
    (x + y).[(x + y)² - 3xy] = 702 → recall: xy = 1
    (x + y).[(x + y)² - 3] = 702 → let: m = x + y
    m.(m² - 3) = 702
    m³ - 3m - 702 = 0 → 702 = 729 - 27 = 9³ - (3 * 9) ← you can see that m = 3 is an obvious solution
    m = 9 → recall: m = x + y
    x + y = 9 → recall: xy = 1 → y = 1/x
    x + (1/x) = 9
    (x² + 1)/x = 9
    x² + 1 = 9x
    x² - 9x + 1 = 0
    Δ = (- 9)² - (4 * 1) = 81 - 4 = 77
    x = (9 ± √77)/2
    First case: x = (9 + √77)/2
    x² = [(9 + √77)/2]²
    x² = (9 + √77)²/2²
    x² = (81 + 18√77 + 77)/2²
    x² = (158 + 18√77)/2²
    x² = (79 + 9√77)/2
    x⁴ = [(79 + 9√77)/2]²
    x⁴ = (79 + 9√77)²/2²
    x⁴ = (6241 + 1422√77 + 6237)/2²
    x⁴ = (12478 + 1422√77)/2²
    x⁴ = (6239 + 711√77)/2
    x⁵ = x⁴.x
    x⁵ = [(6239 + 711√77)/2].(9 + √77)/2
    x⁵ = (6239 + 711√77).(9 + √77)/4
    1/x⁵ = 4/[(6239 + 711√77).(9 + √77)]
    1/x⁵ = 4.(6239 - 711√77).(9 - √77) / [(6239 + 711√77).(6239 - 711√77).(9 + √77).(9 - √77)]
    1/x⁵ = 4.(6239 - 711√77).(9 - √77) / [(6239² - {711² * 77}).(81 - 77)]
    1/x⁵ = 4.(6239 - 711√77).(9 - √77) / [(4).(4)]
    1/x⁵ = (6239 - 711√77).(9 - √77)/4
    1/x⁵ = (56151 - 6239√77 - 6399√77 + 54747)/4
    1/x⁵ = (110898 - 12638√77)/4
    1/x⁵ = (55449 - 6319√77)/2
    Recall the memorized result
    a = x⁵ + (1/x⁵)
    a = [(6239 + 711√77).(9 + √77)/4] + [(55449 - 6319√77)/2]
    a = [(6239 + 711√77).(9 + √77) + 2.(55449 - 6319√77)]/4
    a = [56151 + 6239√77 + 6399√77 + 54747 + 110898 - 12638√77]/4
    a = (56151 + 54747 + 110898)/4
    a = 221796/4
    a = 55449 ← you can see that does not depend on √77
    Second case: x = (9 - √77)/2 → a = 55449

  • @yakupbuyankara5903
    @yakupbuyankara5903 3 дні тому +1

    55449