Geographic Data Visualization - Mary Franck

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 14

  • @mohammadhassaneskandari8508
    @mohammadhassaneskandari8508 11 місяців тому

    This is amazing, and thank you for providing your project files! Awesome tutorial

  • @amluzia
    @amluzia 4 роки тому +1

    Excellent thank you!

  • @astolat
    @astolat 3 роки тому

    thank you for this from Russia! it`s very useful

  • @hamidestejab2427
    @hamidestejab2427 4 роки тому

    Awesome ! thanks.

  • @esaa.mariamis
    @esaa.mariamis 4 місяці тому

    Example files are not available. Could someone help with that?

  • @dozer-bm9ru
    @dozer-bm9ru Рік тому

    any idea where I can get the example files? resource link seems to be dead

  • @PushHolistic
    @PushHolistic 3 місяці тому

    Got stuck pretty early :/ there's no second option to enable rim lights

    • @TouchDesignerOfficial
      @TouchDesignerOfficial  9 днів тому

      On the Advanced page of any Phong or PBRMaterial, you will find toggles for 'Enable Rim Light 1' and 'Enable Rim LIght 2'. You can see this in 15:51

  • @gnomalab
    @gnomalab 5 років тому

    love this!

  • @bkentffichter
    @bkentffichter 4 роки тому

    This is awesome! The only question I have as a new touchdesigner developer, how would you manipulate rotation of the camera or the sphere with mouse drag or other gesture input? My first thought is to translate the mouse vector to a rotation. Are there other ways to do this in TD?

    • @philippeprovencher5163
      @philippeprovencher5163 4 роки тому

      take a look at arcball camera in the palette, its already a tool within TD !

  • @DesignNewbie0928
    @DesignNewbie0928 7 місяців тому

    the file is missing
    helppppppppppppppppppppppppppppppp

  • @RyanSimrell
    @RyanSimrell 4 роки тому

    Anyone able to find a good resource for converting latitude longitude to cartesian values?

    • @RyanSimrell
      @RyanSimrell 4 роки тому +3

      This could probably be cleaned up a bit, but after some trial and error was able to come up with this in python which worked...
      import numpy as np
      # latitude
      lat = 36.8936996
      # longitude
      lon = -82.4881973
      # radius your sphere
      r = 1
      # Converting lat/long to cartesian
      latDeg = np.deg2rad(lat)
      lonDeg = np.deg2rad(lon)
      x = r * ((np.cos(latDeg) * np.cos(lonDeg)) * 100) * -1
      y = r * ((np.cos(latDeg) * np.sin(lonDeg)) * 100) * -1
      z = r * (np.sin(latDeg)) * 100
      # print results
      print(x)
      print(y)
      print(z)