irreducibility of polynomials lecture4( modulo p test cont....) ring theory

Поділитися
Вставка
  • Опубліковано 4 січ 2025

КОМЕНТАРІ • 52

  • @harekrishnamishra2824
    @harekrishnamishra2824 6 років тому +3

    Sir,Aap ka padhane or samjhane ka jo style hai sir, o UNIQUE hai .
    so thank you sir

  • @SaddamHussain-js6ut
    @SaddamHussain-js6ut 5 років тому

    I tried many times to understand p- test but couldn't but now i understood p-test by you.thanks a lot respected sir..

  • @nafeeskhan4187
    @nafeeskhan4187 6 років тому +2

    Awesome explain

  • @naturenature.123
    @naturenature.123 3 роки тому +1

    Very clear explanation

  • @sajidmunir560
    @sajidmunir560 3 роки тому

    Nice explain dear sir
    Sir kindly provide part 3 of irreducibility of polynomial

  • @debabratapal9731
    @debabratapal9731 4 роки тому +2

    3no video on irreducibility upload plzzzzz

  • @bhagyshreepattnaik4997
    @bhagyshreepattnaik4997 5 років тому

    Bahat Acha explain karteho sir ...thank you....😄

  • @ShivKumar-wq6sf
    @ShivKumar-wq6sf 3 роки тому

    Thankyou so much sir....
    Your teaching style is great ....😊😊😊

  • @abhishekhoon4323
    @abhishekhoon4323 4 роки тому

    Sir bhut achha samjhaye aap🙏

  • @ImranAhmad-ty2ye
    @ImranAhmad-ty2ye 5 років тому +3

    Is topic ka 3 lecture nhi dikh rha

  • @NISHANISHA-rq5hw
    @NISHANISHA-rq5hw 3 роки тому

    very useful sir

  • @anuragshukla225
    @anuragshukla225 6 років тому +4

    sir ap daily 2 or more video upload kar dia karo sir kyoki sir exam se pahle revision ka time mil jayega

    • @Ribhyazclasezjhigher
      @Ribhyazclasezjhigher  6 років тому

      Hello Anurag, I try to upload more videos but time problem dear. Here I have to take regular Classes also..... So bit time problem.....

  • @RajeevKumar-ld1rx
    @RajeevKumar-ld1rx 6 років тому

    sir apke padane aur samjhane ka tarika bahut hi achha hai. sir pls upload fermats theorem

  • @shub_srma
    @shub_srma 6 років тому

    really sir very good explanation....

  • @harekrishnamishra2824
    @harekrishnamishra2824 6 років тому

    sir, aapko bahut bahut dhanybaad.
    you are great sir

  • @shubhamkhandelwal8497
    @shubhamkhandelwal8497 5 років тому

    Outstanding 👏👌👌👍👍

  • @manishmishra1997
    @manishmishra1997 4 роки тому +1

    Lecture 3rd nhi mil raha

  • @kumar.4455
    @kumar.4455 6 років тому

    Really very very thank you sir please complete NET syllabus sir please please

  • @tarunjitmodak5560
    @tarunjitmodak5560 2 роки тому

    Sir lecture 3 kaha hai, mil nahi Raha,

  • @mishraji1973
    @mishraji1973 6 років тому

    Thank you sir.
    You are very very great

  • @hemantojha2494
    @hemantojha2494 4 роки тому +1

    sir lelture3 Ka video private Hai Plz Do public

  • @monikadewangan7627
    @monikadewangan7627 6 років тому

    bhut acche se samjh aaya sir thank u sir

    • @singingkakida4945
      @singingkakida4945 6 років тому

      Sir apne ek standard book follow karne bola .Pls suggest that book

  • @swatidalwai1295
    @swatidalwai1295 6 років тому

    Sir, in module P test wether all polynomials with integer coefficients are irreducible in rational field? if not , then when we can stop , the process of choosing prime numbers when the degrees are not macthed or f bar function is reducible over integer mod P

  • @MATHMAGIC-hy6gz
    @MATHMAGIC-hy6gz 4 роки тому

    Sir modulo p test polynomial ki kitne degree ke leye true hai

  • @muhammedahsan07
    @muhammedahsan07 5 років тому

    How one can allow to open private videos

  • @rohitthakuracademy2017
    @rohitthakuracademy2017 10 місяців тому

    Thank you sir ji ❤

    • @Ribhyazclasezjhigher
      @Ribhyazclasezjhigher  10 місяців тому +1

      Dear student, thank you for your appreciation. Keep learning and keep supporting us..

  • @MukeshKumarDansena-vk9yc
    @MukeshKumarDansena-vk9yc Рік тому

    Irreducibility over Q doesn't imply irreducibility over Z.. it is not iff condition

  • @jayitamarik9392
    @jayitamarik9392 3 роки тому

    If f(x) = X^4 + x^2 + 1 , it is irreducible over z2 hence it should be irreducible over Z. But actually it is reducible over Z. Because (x^2+1+x) (x^2+1-x)

  • @dreamer1931
    @dreamer1931 4 роки тому

    Modulo p test bhi field p hi apply hota h ????

  • @vasantkumarmishra3537
    @vasantkumarmishra3537 5 років тому +2

    Lecture 3 nhi hai kya irreducibility ka??

  • @RAMPAL1234
    @RAMPAL1234 5 років тому

    👌👌👌

  • @HowardARoark
    @HowardARoark 3 роки тому

    Why must p be prime ?

  • @topiado2073
    @topiado2073 5 років тому

    Sir ur response would be highly respected...

  • @anuragshukla225
    @anuragshukla225 6 років тому

    sir group and ring homomorphism find karne ka detail method explain kar dejiye

  • @dreamer1931
    @dreamer1931 4 роки тому

    Sir modulo p test sirf Q k liye hai irreducibility check krne k liye over z(p)

  • @khushiporwal5024
    @khushiporwal5024 5 років тому

    Sir ,kuch polynomial modp test se irreducible nhi hote h but eisenstein test se wo irreducible hote h ..is it possible??

  • @dreamer1931
    @dreamer1931 5 років тому

    Sir y p test sirf Z(x) p hi apply krege ?

  • @anuragshukla225
    @anuragshukla225 6 років тому

    good video

  • @monikadewangan7627
    @monikadewangan7627 6 років тому

    sir isse related net k question ka solution kijiyega sir

  • @kumar.4455
    @kumar.4455 6 років тому

    Aapka institute Kha hai sir??

  • @abhishekmeghwal6885
    @abhishekmeghwal6885 5 років тому

    F(x)=x^2 - 9 over Z11 what can we say about this function...

  • @neelkamalnirala3328
    @neelkamalnirala3328 6 років тому

    Sir jo over Q me irreducible hai oh Z me hota hai but 2x^2+8 sir ye Q pe hai but Z me nai hai

  • @abhishekmeghwal6885
    @abhishekmeghwal6885 5 років тому

    X^4+x^2+1 to esse irreducible aa rha hai..but ye to reducible hai...sir doubt clear karde please..

  • @kumar.4455
    @kumar.4455 6 років тому

    PID par December 2017 Ka Bucklet A, questions no. 85 Ka solution btaiye na sir please, last option me dikat ho rha h sir. I am writing your answer. Sir please help me.

    • @Ribhyazclasezjhigher
      @Ribhyazclasezjhigher  6 років тому

      Look, this is the ring in two variables. The ideal (x^2+1,y) is maximal ideal of R[x,y] so given factor ring is a field and hence it is PID.....the logic is same for option 1. For option 2 , since Z is not a field z[x] is not PID. for option 3, R[x,y] is not PID , since R[X] is PID but can never be a field and hence R[x,y] is not a PID....

    • @kumar.4455
      @kumar.4455 6 років тому

      Arvind Singh Yadav ,SR institute for Mathematics Thank you sir

  • @mainakpradhan6175
    @mainakpradhan6175 Рік тому

    Proof kidhar hain!! 😑😑