How To Connect Llama3 to CrewAI [Groq + Ollama]

Поділитися
Вставка
  • Опубліковано 24 лис 2024

КОМЕНТАРІ •

  • @dataninjuh2135
    @dataninjuh2135 Місяць тому

    This man knows what the people want , getting up and running with LLMs and Agents for the F R E E 😮‍💨 !
    “Now this is pod racing !” 😂🙏🏻👍

  • @theBookofIsaiah33ad
    @theBookofIsaiah33ad 7 місяців тому +2

    Man, I do not know how to create and write code but you have made a video and I think I can do this! Bless you my friend!

    • @bhancock_ai
      @bhancock_ai  6 місяців тому

      Thank you! I'm confident you can do it! Let me know if you nee help with anything!

  • @d.d.z.
    @d.d.z. 7 місяців тому +3

    Friendly commment: You look better with glasses, more professional. Great content.

    • @bhancock_ai
      @bhancock_ai  6 місяців тому

      Hey D! Thanks!
      I love wearing glasses and hate my contacts so I think I might need to go full glasses mode 🤓

  • @darkyz543
    @darkyz543 5 місяців тому +2

    Your channel is THE real gold mine. Thank you so much.

    • @ronaldshyu
      @ronaldshyu 5 місяців тому +1

      I totally agree!

  • @kepenge
    @kepenge 6 місяців тому

    Appreciate your support (with those contents), the only drawback, was the need to subscribe to get access to a project that isn't yours. 😞

  • @protovici1476
    @protovici1476 7 місяців тому +3

    Excellent video! Would be interesting to see these frameworks, but within LightningAI Studios. Also, I saw CrewAI will be having a more golden standard approach to their code structuring in the near future.

    • @bhancock_ai
      @bhancock_ai  7 місяців тому +3

      Thank you! And you're definitely right about CrewAI moving towards YAML. When CrewAI+ drops, I plan on making a lot more content around this new format for you guys!
      And, I haven't tried out LightningAI Studio yet so I'll definitely have to try it out this weekend. Thanks for the suggestion!

    • @protovici1476
      @protovici1476 7 місяців тому

      @@bhancock_ai Great! I like the YAML approach. William Falcon that started LightningAI (PyTorch Lightning) likes my posts on LinkedIn as I'm a huge fan in developing with it when I mention them. Will be studying your approach with the latest updates and hopefully with their Studio. Thanks!!

  • @GregPeters1
    @GregPeters1 7 місяців тому +4

    Hey Brandon, welcome back after your vacay!

    • @bhancock_ai
      @bhancock_ai  7 місяців тому +3

      Feels good to be back! I'm recharged and ready to go!

  • @FaithfulStreaming
    @FaithfulStreaming 5 місяців тому

    I hope we can get access to your skool soon! Its been a few days. So I can learn from your group.

  • @CodeSnap01
    @CodeSnap01 7 місяців тому +1

    refereshed after short vacation.. hope to see you frequently

  • @MariodeFelipe
    @MariodeFelipe 7 місяців тому +2

    The quality is 10/10 thanks mate

    • @bhancock_ai
      @bhancock_ai  6 місяців тому

      Thank you Mario!

    • @AndyPandy-ni1io
      @AndyPandy-ni1io 6 місяців тому

      @@bhancock_ai /llama3-crewai is this automate-youtube-with-crewai? or crewai-updated-tutorial-hierarchical
      or crew-ai-crash-course or nextjs-crewai-basic-tutorial
      or crew-ai-local-llm or crewai-groq-tutorial git hub I can't work out what file relates to this video?

  • @madhudson1
    @madhudson1 6 місяців тому

    Good luck getting local, quantized models to reliably function call, or use any kind of 'tool'. They need so much more supervision, which is where frameworks like langgraph can help, rather than crew

  • @aboali-pl7ib
    @aboali-pl7ib 3 місяці тому +1

    thank you for your help 🤘🤘

  • @tapos999
    @tapos999 6 місяців тому +1

    thanks! Your crewai tutorial are top-of-the-shelf stuff. do you have any crewai proejct with streamlit connected to show output on the ui? thanks

  • @shuntera
    @shuntera 7 місяців тому +1

    With both the Groq 8b and 70b with crew max_rpm set at both 1 or 2 I do get it halting for a while with:
    [INFO]: Max RPM reached, waiting for next minute to start.

    • @bhancock_ai
      @bhancock_ai  7 місяців тому

      The problem is that Groq is so fast that it ends up processing too many tokens so it ends up hitting a rate limit and failing.
      To get around that, we have to slow down our crew by setting the max RPM.
      Feel free to bump it up to get your crew to move faster!

  • @togai-dev
    @togai-dev 6 місяців тому

    Hey Brandon great video by the way. There seems to be an error as such.
    It seems we encountered an unexpected error while trying to use the tool. This was the error: Invalid json output: Based on the provided text, a valid output schema for the tool is:
    {
    "tool_name": str,
    "arguments": {
    "query": str
    }
    }
    This schema defines two keys: `tool_name` which should be a string, and `arguments` which should be a dictionary containing one key-value pair. The key in this case is `query`, with the value being another string.
    'str' object has no attribute 'tool_name'

  • @shuntera
    @shuntera 7 місяців тому +1

    That is using a very old version of CrewAI - if you run it with the current version of CrewAI it fails because of lack of expected_output parameter in the Tasks

  • @nathankasa6220
    @nathankasa6220 7 місяців тому +1

    Thanks! Is Claude 3 opus still not supported though? How come?

  • @thefutureisbright
    @thefutureisbright 7 місяців тому +1

    Brandon excellent tutorial 👍

    • @bhancock_ai
      @bhancock_ai  7 місяців тому

      Thanks man! I really appreciate it!

  • @Omobilo
    @Omobilo 6 місяців тому

    Great stuff. Maybe a silly question, but when it was fetching to read data from remote website (the analysis part), does it read it remotely OR does it capture screenshots & download text to feed into its prompt and then clear this cached data or such local cached data needs to be cleaned eventually? Hope it simply reads remotely without too much data saved locally as I plan to use this approach to analyze many websites without flooding my local storage.

  • @reidelliot1972
    @reidelliot1972 7 місяців тому

    Great content as always! Do you know if it's sustainable to use a single groqcloud API key to host LLM access for a multi-user app? Or would a service like AWS Sagemaker be better for simultaneous users?
    Cheers!

  • @Ryan.Youtube
    @Ryan.Youtube 7 місяців тому +1

    This is awesome! 😎

  • @MichaelDavison-mv8dr
    @MichaelDavison-mv8dr 3 місяці тому

    cant get the tools.search_tools module to run says not foun, ive trued pip install command or just install command with tools name, no luck any ideas please

  • @clinton2312
    @clinton2312 7 місяців тому +1

    Thank you :)

  • @bennie_pie
    @bennie_pie 7 місяців тому

    Thank you for this and for the code.. How does Llama 3 compare to Dolphin-Mistral 2.8 running locally as the more junior agents do you know? Dolphin-Mistral with its extra conversatuon/coding training and bigger 32k context window appeals! Ive had agents go round in circles creating nonsense with other frameworks as they dont remember what they are supposed to do! A big context window defo could bring some benefits! I try and avoid using GPT3.5 or 4 for coding preferring for this reason. Id then like to use Claude 3 Opus with his 200k context window and extra capability for the heavy liftin and oversight!

  • @ag36015
    @ag36015 6 місяців тому

    What would you say are the minimum hardware requirements to make it run smoothly?

  • @Storytelling-by-ash
    @Storytelling-by-ash 6 місяців тому +1

    I get a error, then I noticed that we need search api, I added that but still get the error
    pydantic_core._pydantic_core.ValidationError: 1 validation error for Task
    expected_output
    Field required [type=missing, input_value={'description': "Analyze ...e business landscapes.)}, input_type=dict]

    • @ravinayak5457
      @ravinayak5457 5 місяців тому

      You get this resolved?

    • @ravinayak5457
      @ravinayak5457 5 місяців тому

      This is resolved by adding expected_output in your task

  • @tusharparakh6908
    @tusharparakh6908 4 місяці тому

    Can I use this and deploy it live so that other people can use it? Does it run for free only locally or its free when its deployed also?

  • @deadbody408
    @deadbody408 7 місяців тому +1

    might want to revoke those keys you revealed if you haven't

  • @mikesara7032
    @mikesara7032 7 місяців тому +1

    your awesome, thank you!

    • @bhancock_ai
      @bhancock_ai  7 місяців тому +1

      Thanks Mike! You're awesome too!

  • @pratyushsrivastava6646
    @pratyushsrivastava6646 7 місяців тому +2

    Hello sir
    Nice content

  • @geneanthony3421
    @geneanthony3421 2 місяці тому

    I ran the code on Ollama and on Groq and I'm getting a loop "It seems we encountered an unexpected error while trying to use the tool. This was the error 'organic'" [Info]: Max RPM reached, waiting for next minute to start

  • @AnjuMohan-d8c
    @AnjuMohan-d8c 4 місяці тому

    Can someone help me, I got the following when I ran llama3 in Ollama.
    Created a chunk of size 1414, which is longer than the specified 1000
    Created a chunk of size 1089, which is longer than the specified 1000
    Created a chunk of size 1236, which is longer than the specified 1000

  • @jalapenos12
    @jalapenos12 6 місяців тому +1

    Just curious why VSCode doesn't display file types on Mac. I'm going bonkers trying to figure out what to save the Modelfile as.

    • @bhancock_ai
      @bhancock_ai  6 місяців тому

      Hey! There actually isn't a file type for that file. You can just leave it how it is. Hope that helps!

    • @jalapenos12
      @jalapenos12 6 місяців тому

      @@bhancock_ai Thanks for the quick response. I figured out that ".txt" works for those of us in other operating systems.

  • @jarad4621
    @jarad4621 6 місяців тому

    Please for the love of god somebody explain to me why we are using Ollama to download local models and then using Groq anyway to run the model in the cloud. Why can't we just skip the ollama part? I beg you i see all the videos using Ollama with Groq and i don't understand the aspect! thank you. Does ollama do something special to make it work better for crewai then a direct Groq connect?

  • @ryana2952
    @ryana2952 6 місяців тому

    Is there an easy way to build No Code AI Assistants or Agents with Groq? I know zero code

  • @jarad4621
    @jarad4621 7 місяців тому

    Hi Brandon, the groq rate limit is a big issue for my use case, can i use this same method to use another similar hosted llama 3 70b with crewai like openrouter api or can any api be used instead of groq with your method?

    • @jarad4621
      @jarad4621 7 місяців тому

      Oh i see it has to be an api alreadyy supported by langchain correct or it wont work?

  • @QiuyiFeng-t2j
    @QiuyiFeng-t2j 2 місяці тому

    Max RPM reached, waiting for next minute to start. How to solve it...

  • @magnuscarlsson5067
    @magnuscarlsson5067 7 місяців тому

    What graphic card do you use on your computer when running local with Ollama?

    • @krysc4d
      @krysc4d 7 місяців тому

      The key is VRAM. I can run smoothly llama 3 70b on RTX3090 hiting about 16GB of VRam (if remember correctly)

  • @rauljauregi6615
    @rauljauregi6615 7 місяців тому

    Nice! 😃

  • @ZombieGamerRealm
    @ZombieGamerRealm 6 місяців тому

    gyus do u know any way to run crewai and\or llama on gpu? only CPU is soooooooooooooooooooooooo sloooooooooooooow

    • @ArseniyPotapov
      @ArseniyPotapov 6 місяців тому

      llama_cpp (what ollama is based on) or vllm

  • @miaohf
    @miaohf 7 місяців тому

    Very good video demonstration. I noticed that you chose to use serper search in the video. I would like to know the difference between serper and duckduckgo search and how to choose between them. If you know, please introduce it to me. Thank you.

  • @raghuls1469
    @raghuls1469 6 місяців тому

    Hello Brandon thanks for the awesome video, I was trying to do the same setup with crew AI, but I am getting an error while running, I added the error message below
    Traceback (most recent call last):
    File "D:\crew_ai\crew.py", line 114, in
    result = crew.kickoff()
    ^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\crew.py", line 252, in kickoff
    result = self._run_sequential_process()
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\crew.py", line 293, in _run_sequential_process
    output = task.execute(context=task_output)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\task.py", line 173, in execute
    result = self._execute(
    ^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\task.py", line 182, in _execute
    result = agent.execute_task(
    ^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\agent.py", line 207, in execute_task
    memory = contextual_memory.build_context_for_task(task, context)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\memory\contextual\contextual_memory.py", line 22, in build_context_for_task
    context.append(self._fetch_stm_context(query))
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\memory\contextual\contextual_memory.py", line 31, in _fetch_stm_context
    stm_results = self.stm.search(query)
    ^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\memory\short_term\short_term_memory.py", line 23, in search
    return self.storage.search(query=query, score_threshold=score_threshold)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\crewai\memory\storage
    ag_storage.py", line 90, in search
    else self.app.search(query, limit)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\embedchain\embedchain.py", line 635, in search
    return [{"context": c[0], "metadata": c[1]} for c in self.db.query(**params)]
    ^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\embedchain\vectordb\chroma.py", line 220, in query
    result = self.collection.query(
    ^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\chromadb\api\models\Collection.py", line 327, in query
    valid_query_embeddings = self._embed(input=valid_query_texts)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\chromadb\api\models\Collection.py", line 633, in _embed
    return self._embedding_function(input=input)
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\chromadb\api\types.py", line 193, in __call__
    result = call(self, input)
    ^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\chromadb\utils\embedding_functions.py", line 188, in __call__
    embeddings = self._client.create(
    ^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\openai
    esources\embeddings.py", line 113, in create
    return self._post(
    ^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\openai\_base_client.py", line 1232, in post
    return cast(ResponseT, self.request(cast_to, opts, stream=stream, stream_cls=stream_cls))
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\openai\_base_client.py", line 921, in request
    return self._request(
    ^^^^^^^^^^^^^^
    File "D:\crew_ai\.my_crew_env\Lib\site-packages\openai\_base_client.py", line 1012, in _request
    raise self._make_status_error_from_response(err.response) from None
    openai.NotFoundError: 404 page not found

    • @ronaldshyu
      @ronaldshyu 5 місяців тому

      Have you tried use ChatGPT to solve you erro? I used and I had a good result.