Hallo Sophia-Marie. Der Vektor b hat die Länge 6. Der Vektor a hat, wenn man ihn auf b projiziert (also sein Schatten bei senkrechtem Licht) die Länge 4. Das Produkt dieser beiden Längen ist 24.
Das Skalarprodukt wird berechnet, indem man die beiden x-Werte der Vektoren multipliziert 4*6=24 plus die beiden y-Werte 3*0=0. In 3:11 - 3:30 kannst du dir ausführlich ansehen, wie das an diesen beiden Vektoren funktioniert.
@@stefanriegel2963Danke 😊 Könnten Sie mir vielleicht erklären wie die „Formel“ zustande kommt bzw. warum sie funktioniert: „der von Vektor b zu Vektor a parallele Anteil“ = Vektor a * Einheitsvektor von b (a||b = a*b0)
@@DerEnduro Nehmen wir zum Beispiel den Vektor a = (a1 a2). Dann kann man sich den aus zwei Anteilen zusammengesetzt denken: einen Vektor in x-Richtung, der lautet (a1 0) und einen Vektor in y-Richtung, der lautet (0 a2). Probe: (a1 0) + (0 a2) = (a1 a2) = a. (a1 0) ist also die Projektion des Vektors a auf die x-Achse und (0 a2) ist die Projektion des Vektors a auf die y-Achse. Ebenso kann man sich den Vektor (a1 0) auch vorstellen, als der zur x-Achse parallele Anteil des Vektors a, das ist die Projektion mit der Länge a1. Und nun zur Formel: Wenn man den Vektor (a1 a2) mit dem Einheitsvektor in x-Richtung (1 0) skalarmultipliziert, steht da: a1 * 1 + a2 * 0 = a1, also genau die Länge der Projektion. Der Grund dafür ist, dass durch die Multiplikation mit dem Einheitsvektor in x-Richtung nur die x-Komponente a1 überlebt, während die y-Komponente a2 mit 0 malgenommen wird und immer wegfällt.
@@stefanriegel2963 Aber man hat doch nicht immer zwangsläufig den Fall dass der Einheitsvektor von b in x-Richtung verläuft. dann fällt ja die y-Komponente nicht weg?
@@DerEnduro Es gibt nur zwei Basiseinheitsvektoren. Der eine ist der Einheitsvektor in x-Richtung (1 0), hier fällt die y-Komponente weg. Der andere Einheitsvektor ist der in y-Richtung (0 1), hier fällt die y-Komponente weg. Wir betrachten nur diese Basiseinheitsvektoren, d.h. die entlang der Koordinatenachsen laufen.
Hallo Xidretin, das Video soll das Skalarprodukt von zwei Vektoren veranschaulichen. Es richtet sich vor allem an Schülerinnen und Schüler, die erste Erfahrungen mit dem Skalarprodukt machen und noch keine Matrizen kennen.
Einwandfreie Erläuterung, danke sehr
Danke Reza. Ich freue mich, wenn du meinen Kanal hilfreich findest.
Ich verstehe nicht was die 24 jetzt sind wo kann ich die graphisch sehen?
Hallo Sophia-Marie. Der Vektor b hat die Länge 6. Der Vektor a hat, wenn man ihn auf b projiziert (also sein Schatten bei senkrechtem Licht) die Länge 4. Das Produkt dieser beiden Längen ist 24.
ganz wunderbar erklärt
Vielen Dank! Ich empfehle dir auch die weiteren Videos aus dieser Playlist über Vektoren.
Vielen Dank 👍
Danke dir auch :-)
5:34 warum ist das Skalarprodukt 4*6 bzw. der parallele Anteil von a*b
Das Skalarprodukt wird berechnet, indem man die beiden x-Werte der Vektoren multipliziert 4*6=24 plus die beiden y-Werte 3*0=0. In 3:11 - 3:30 kannst du dir ausführlich ansehen, wie das an diesen beiden Vektoren funktioniert.
@@stefanriegel2963Danke 😊 Könnten Sie mir vielleicht erklären wie die „Formel“ zustande kommt bzw. warum sie funktioniert: „der von Vektor b zu Vektor a parallele Anteil“ = Vektor a * Einheitsvektor von b (a||b = a*b0)
@@DerEnduro Nehmen wir zum Beispiel den Vektor a = (a1 a2). Dann kann man sich den aus zwei Anteilen zusammengesetzt denken: einen Vektor in x-Richtung, der lautet (a1 0) und einen Vektor in y-Richtung, der lautet (0 a2). Probe: (a1 0) + (0 a2) = (a1 a2) = a. (a1 0) ist also die Projektion des Vektors a auf die x-Achse und (0 a2) ist die Projektion des Vektors a auf die y-Achse. Ebenso kann man sich den Vektor (a1 0) auch vorstellen, als der zur x-Achse parallele Anteil des Vektors a, das ist die Projektion mit der Länge a1. Und nun zur Formel: Wenn man den Vektor (a1 a2) mit dem Einheitsvektor in x-Richtung (1 0) skalarmultipliziert, steht da: a1 * 1 + a2 * 0 = a1, also genau die Länge der Projektion. Der Grund dafür ist, dass durch die Multiplikation mit dem Einheitsvektor in x-Richtung nur die x-Komponente a1 überlebt, während die y-Komponente a2 mit 0 malgenommen wird und immer wegfällt.
@@stefanriegel2963 Aber man hat doch nicht immer zwangsläufig den Fall dass der Einheitsvektor von b in x-Richtung verläuft. dann fällt ja die y-Komponente nicht weg?
@@DerEnduro Es gibt nur zwei Basiseinheitsvektoren. Der eine ist der Einheitsvektor in x-Richtung (1 0), hier fällt die y-Komponente weg. Der andere Einheitsvektor ist der in y-Richtung (0 1), hier fällt die y-Komponente weg. Wir betrachten nur diese Basiseinheitsvektoren, d.h. die entlang der Koordinatenachsen laufen.
super video
Herzlichen Dank!
2:55 aber wenn die Sonne auf den Vektor scheint, kommt nicht 24 raus
Die Länge des Schattens von a in x-Richtung ist 4. Die Länge von b in x-Richtung ist 6. Das Produkt dieser beiden Längen ist 4*6 = 24.
Das Ergebnis 24 kann man doch ziemlich leicht über die lineare Transformation erklären. Also über Matrizen. Oder wäre das dann nicht mehr geometrisch?
Hallo Xidretin, das Video soll das Skalarprodukt von zwei Vektoren veranschaulichen. Es richtet sich vor allem an Schülerinnen und Schüler, die erste Erfahrungen mit dem Skalarprodukt machen und noch keine Matrizen kennen.
@@stefanriegel2963 Aaaahhhh. Ok ja dann war das ein sehr anschauliches und gutes Video. 👍🏼