Find the last two digits!

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ • 153

  • @altynbeknurtaza9672
    @altynbeknurtaza9672 4 роки тому +125

    11:20
    Michael: That's a good place to ...
    Me: No it's not!
    Michael: ...start
    Me: Oh, I see

  • @frannywiii
    @frannywiii 4 роки тому +37

    11:20
    16:11

  • @AndrejPanjkov
    @AndrejPanjkov 4 роки тому +21

    A little brute force but with a calculator :
    3^7 = -13 mod 100
    3^(7^2) = (-13)^7 = -17 mod 100
    3^(7^3) = (-17)^7 = 27 mod 100
    3^(7^4) = 27^7 = 3 mod 100
    so the remainders repeat over a cycle of 4 terms, with -13-17+27+3 = 0
    which is not to diminish Michael's proof using phi. Consider this a confirmation via a different path.

    • @ScarredFrost
      @ScarredFrost 2 роки тому

      From Michael's binomial expansion 13:16, (3^4)^5 = 1 mod 100
      3^(49) = ((3^4)^5)^10 x 3^9 = 3^9 mod 100 = (-13 x 9) mod 100 = -17 mod 100
      3^(343) = ((3^4)^5)^85 x 3^3 = 3^3 mod 100 = 27 mod 100
      3^(2401) = ((3^4)^5)^600 x 3 = 3 mod 100
      No need for a calculator :)

    • @AndrejPanjkov
      @AndrejPanjkov 2 роки тому

      ​@@ScarredFrost Yes, this is doable without calculator, thank you!
      (Just two small fixes: 3^(49) = ((3^4)^5)^10 x 3^9 should be 3^(49) = ((3^4)^5)^2 x 3^9
      and
      3^(343) = ((3^4)^5)^85 x 3^3 should be 3^(343) = ((3^4)^5)^17 x 3^3)

    • @ScarredFrost
      @ScarredFrost 2 роки тому

      @@AndrejPanjkov Ah yes! Thanks for fixing my typo

  • @fmakofmako
    @fmakofmako 3 роки тому +3

    You can skip the calculations at the end once you have that N is congruent to 5*(3^7+3^9+3^23+3) mod 100 because by inspection it is 0 mod 5 and in mod 4 it is 1*(-1+-1+-1+-1) since all the powers of 3 are odd, so -4 mod 4 = 0 mod 4.

    • @NoNameAtAll2
      @NoNameAtAll2 2 роки тому

      why mod 4 and not mod 20?

    • @fmakofmako
      @fmakofmako 2 роки тому

      @@NoNameAtAll2 if something is 0 mod 5 and 0 mod 4, then it's 0 mod 20. I hope that helps.

    • @NoNameAtAll2
      @NoNameAtAll2 2 роки тому

      @@fmakofmako yeah, but if x = 0 mod 4, then 5x = 0 mod 20, but not always =0 mod 100

    • @fmakofmako
      @fmakofmako 2 роки тому

      @@NoNameAtAll2 I just rewatched the video and I'm not sure where I was going when I wrote that comment. Fortunately we just want to check 3+3^7+3^9+3^23 mod 5. We know from the discussed theorem that 3^4 = 1 mod 5, so this boils down to 3+3^3+3+3^3 = 60 == 0 mod 5. I hope that helps.

  • @zlodevil426
    @zlodevil426 2 роки тому +1

    I appreciate that you say φ like phi and not phaj

  • @dujas2
    @dujas2 4 роки тому +2

    There is another shortcut that can be taken in here. If x=20q+r, then 5x=100q+5r. Therefore, you only need to calculate 3^7+3^9+3^23+3^1 mod 20. Here, you can use Euler's Theorem again and find that you only need the exponents mod 4. The result is then This is equivalent to 2(3^1+3^3) which is congruent to 2(3+7) which is congruent to 0 (mod 20). Multiply by 5, and the result is 0 (mod 100).

    • @sundeep0207
      @sundeep0207 2 роки тому

      That's a nice observation! The math would be relatively quite simple.

  • @jonathanhanon9372
    @jonathanhanon9372 4 роки тому +6

    Since we have a 5, we can say N/5 = (3^7 + 3^9 + 3^23 + 3) (mod 20), giving us phi(20) = 8, allowing us to write this as 3^7 + 3 + 3^7 + 3 (mod 20)
    Since 3(3^7) = 1, 3^7 must be 7 mod 20, making the sum 0, and that's a good place to stop.

  • @micomrkaic
    @micomrkaic 4 роки тому +4

    Amazingly clear explanation! Thank you for this.

  • @h4z4rd28
    @h4z4rd28 4 роки тому +65

    Nice haircut

    • @Tiqerboy
      @Tiqerboy 4 роки тому +8

      He releases videos so often you can pretty much pin down the day he sees the barber.

    • @h4z4rd28
      @h4z4rd28 4 роки тому +2

      @@Tiqerboy exactly

    • @Taterzz
      @Taterzz 4 роки тому +1

      i don't think the barber did a very good job, it's patchy lol.

  • @keithmasumoto9698
    @keithmasumoto9698 4 роки тому +6

    I find it amazing that these problem creators can come up with problems like this. I just don't see how they back into a problem like this where the huge sum ends up being divisible by 100 and at the same time involves a large exponent equal to the current year.

  • @SiuHongLi-t6k
    @SiuHongLi-t6k 4 роки тому +5

    11:33
    As 20*5=100
    Only need to consider mod20
    And 3^4=81=4*20+1
    (3^7+3^9+3^23+3)
    =3(3^6+3^8+3^22+1)
    Mod20 obtain
    3(3^2+1+3^2+1)=20*3=60
    Mod 20 obtain 0

    • @Accusan
      @Accusan 4 роки тому +1

      That ia wrong statement. For example 170(mod100)=70 but 170(mod20)=10
      170=5×34

    • @roboto12345
      @roboto12345 4 роки тому +1

      You need to use comprime mods so you will finish with CRT. If you get that n is 0 mod a and 0 mod b you are just proving that n es divisble by thr mcm of a and b

    • @roboto12345
      @roboto12345 4 роки тому +1

      The another tip would be that if you are using non coprime residues then just use the generalization of CRT

    • @SiuHongLi-t6k
      @SiuHongLi-t6k 4 роки тому

      @@Accusan
      am( mod mn) = mb
      mean am=Kmn+mb=m(Kn+b)
      so that
      a(mod n)=b
      am (mod mn)=mb
      these two are equivalent
      I just forget to multiple both side by 5

  • @SlidellRobotics
    @SlidellRobotics 4 роки тому

    At 16:14, get 7^4 (mod 40) by squaring (7^2 (mod 40) = 9 (mod 40)). 9^2=81=1(mod40).

  • @thayanithirk1784
    @thayanithirk1784 4 роки тому +29

    Please upload your research papers and explanation as your 100 k special.whoever agrees hit a like

  • @sirgog
    @sirgog 4 роки тому

    I started this a little differently just by looking at powers of 3 mod 100 and noticing that 3^20 is 1 mod 100 (didn't work that out directly, but I have 3^10 memorized and know it ends in 49, and 49 is a square root of 1 mod 100).
    Rest goes the same way.

  • @goodplacetostop2973
    @goodplacetostop2973 4 роки тому +11

    11:21 Good place to start
    16:11 Good place to stop
    Loading 94.6%... Hello Michael, hello world! I have you’re having a great day! Don’t forget to take care of your mental health. Homework...
    For which real α does the curve y = x^4 + 9x^3 + α x^2 + 9x + 4 contain four collinear points? (Putnam 1994 - Problem B2)

    • @manishtripathy5156
      @manishtripathy5156 4 роки тому +1

      Umm where do you get these problems

    • @nzf-kx2qol1g12
      @nzf-kx2qol1g12 4 роки тому +1

      It's now 94.7% :D

    • @R0M4ur0
      @R0M4ur0 4 роки тому

      Would it work finding those alpha which make the first derivative have three zeros and the sencond derivative two?

  • @NegativeAccelerate
    @NegativeAccelerate 4 роки тому +3

    I like that you name the theorems that you’re using. So if I don’t know them I can google them and then attempt the question
    P.s. feel free to link any videos you have done on any of the theorems you name in the description.

  • @shailendragupta7517
    @shailendragupta7517 4 роки тому +2

    find rational number a,b,c such that (2^(1/3)-1)^(1/3)=a^(1/3)+b^(1/3)+c^(1/3)

  • @joaopedrobmenezes2977
    @joaopedrobmenezes2977 4 роки тому +11

    I miss those exercises that ask you to find the last numbers of something. Even though you can usually solve it using mod 10^x ( for some natural x) , it stills funny

  • @fracaralho
    @fracaralho 4 роки тому +2

    I'm going back to 9:49
    If it's a 7-hour flight or a 45-minute drive

  • @tesev.7703
    @tesev.7703 4 роки тому

    fantastic explanation

  • @alboris8203
    @alboris8203 2 роки тому

    Never learned about this tool in my number theory class. Very cool

  • @paolomilanicomparetti3702
    @paolomilanicomparetti3702 4 роки тому +1

    thanks for the tips and short example, was enough to let me solve the rest by myself which is a lot more fun

  • @wafelsen
    @wafelsen 3 роки тому

    I am pleased that I got all of that on my own except the 3^23 bit and on.

  • @tahirimathscienceonlinetea4273
    @tahirimathscienceonlinetea4273 4 роки тому +1

    It's very nice work you went through super details of explication

  • @kriswillems5661
    @kriswillems5661 4 роки тому

    From an engineer (not a mathematician)
    step 1: 3^7 looking at only the last two is 87 (27*27*3)
    step 2: 3^7^2 = (3^7)^7 is like 87^7 looking only at the last 2 digits is 83
    step 3: 3^7^3 = (3^7^2)^7 is like 83^7 looking only at the last 2 digits, which is 27
    step 4: 3^7^4 = (3^7^3)^7 is like 27^7 looking only at the last 2 digits, which is 3,
    step 5 is the same as step 1
    Step 1 to 4 (87+83+27+3) add up to x00 and repeat 505 (2020/4) times, so the last 3 digits are either 500 or 000.

  • @tomatrix7525
    @tomatrix7525 4 роки тому

    Really nice review of this thm. Good stuff

  • @ИгорьКравцов-д4щ
    @ИгорьКравцов-д4щ 4 роки тому +5

    That was satisfying

  • @tonysplodge44
    @tonysplodge44 4 роки тому

    Thanks Michael, another one I get because your steps are so clear. But is anyone else slightly troubled by the notation? Ordinarily it's not a problem for simple modular stuff, but using the same brackets (or braces or whatever you call them) for the powers of three and for the mod 100 to me is a bit ambiguous. I would have preferred to see different brackets around the mod 100, eg N=5(x+y+z){mod 100}.... or am I just Mr Picky?

    • @toriknorth3324
      @toriknorth3324 4 роки тому +2

      It's just standard convention, though I won't try to argue that it's a good convention.

  • @xevira
    @xevira 4 роки тому +5

    When you were working on the 3^23 mod 100 section, I realized the number was a multiple of 100 and went "Yooooou bastard... " at the problem. XD

    • @elkincampos3804
      @elkincampos3804 4 роки тому

      Indeed if (a,100)=1 then a^20 is congruent to 1 mod 100 because 100=25*4, phi(25)=20 and phi(4)=2 then a^20 congruent to 1 mod 25, a^20=(a^2)10 congruent 1 mod 4. Therefore a^20 is congruent to 1 mod 100. Thus 3^23=3^20*3^3 congruent to 3^3=27 mod 100

  • @emanuelvendramini2045
    @emanuelvendramini2045 4 роки тому

    Incredible resolution!

  • @faycaljedda334
    @faycaljedda334 4 роки тому +1

    13 th min : 3²³= 3²⁰ . 3³ (mod100)
    =(3⁵)⁴ . 3³ (mod100)
    =(43)⁴ . 3³ (mod100)
    =49². 3³ (mod100)
    =27 (mod100)
    This is easier than the way you treated it , since you've already calculated 3⁵

  • @wesleydeng71
    @wesleydeng71 4 роки тому +7

    Homework: Find the last three digits!

    • @Notthatkindofdr
      @Notthatkindofdr 4 роки тому +3

      Challenge accepted! Use the Chinese Remainder Theorem to break the problem down into mod 8 and mod 125 to simplify the calculations. Since 3^2=1 (mod 8), it is quick to check that the entire sum is 4 (mod 8). Then use the facts that phi(125)=100 and the order of 7 mod 100 is 4, so every consecutive four terms have the same sum, which turns out to be 25, mod 125 (after a bunch of calculations by hand of powers of 3 mod 125). This implies that the entire sum is 0 (mod 125). Combining this with 4 (mod 8), we see that the whole sum is 500 (mod 1000).

    • @Notthatkindofdr
      @Notthatkindofdr 4 роки тому

      Now for another homework question: how many digits does the number of digits of this sum have?

    • @riseciv7991
      @riseciv7991 4 роки тому

      @@Notthatkindofdr the process of combining 4 mod 8 and 0 mod 125 into 500 mode 1000 is relatively easy? Conceptually or computationally?

    • @Notthatkindofdr
      @Notthatkindofdr 4 роки тому

      @@riseciv7991 There is a relatively straightforward way to compute it using a formula from the Chinese Remainder Theorem, though it involves some modular arithmetic calculations. But in this particular example it is not too hard to figure it out directly: a number that is 0 mod 125 is a multiple of 125, so check 125, 250, 375, 500, etc. until you find the one that is 4 mod 8.

    • @OscarCunningham
      @OscarCunningham 4 роки тому +1

      ​@@Notthatkindofdr The same number of digits as 3^7^2020, which is 1 + floor(log(3^7^2020)/log(10)), which is 597956502043767935135303320371262426014703635534155055142830258962780377290231766743500776054719394697087280766908482441274693523774407240513154475027306453642191680106730603124206675935327886069196832301974142608692202917564595561348305529405911352766324939445473098056728445509890990321479085236860102954866236825955515330882703149228480546160534839141354053103635812452944613596908024541713941342935811294399081501790307736513520570179117477440487705264618917983946166343228550787869625548275285778499834976864568423051259258114913483898293600963231089599470049905424724782678930178666111390775247163300079655601712026033441228932066650453147031817117872436167180890618402130716369818237715869561740984581132707906821908300326411194798955220926518902537533513075424542281067149826767664683370397865726424556106663715219483347560326575032884724955821624609207563025236406912675236657969941538578845681206893726601142636770579819368831957807114270908870896876232015092935508963563793248482471086216670752176695475885386471643640010490194150313723844630837902389323994910169030239809210243609658757001356971808482066692380846573616739198798773843743317269825149383368887937546937113424083407921366892569012420784559213783797774935886467262423808789639500249556622626759475356492829998029753370170387882678039038236889467817464337809575266286277698333584329197947713715705633777543434483781701762835412380122743334048622873443743174292261662079274561098376708024441011604561341407670431551434438228758915434921951731906821850410673072848244805717969876807206352094955199351420282560256297899162878851781586843696563023858538947869818638345063137419407629875072711962323802850151574052451413912441356777169017.

  • @tonyhaddad1394
    @tonyhaddad1394 4 роки тому +1

    Man wowwww this type of question is my best beacause it show you how logic of algebra and arithmetic
    Reduce a huge problem to get the answer when most of calculator
    Can t do it
    I still weak in this type of problem but every video you upload make me better thank u

  • @leif1075
    @leif1075 4 роки тому

    Why did tou choose 5 raised 575 mod 8..isnit random or some connection with the problem?

  • @acident4939
    @acident4939 4 роки тому

    well the 5^575 (mod 8) shouldn’t be that complicated. But it does it job well for the demonstration part.

  • @videolome
    @videolome 4 роки тому +7

    I don’t known why you don’t like to use the Chinese Remainder Theorem.

    • @MrRyanroberson1
      @MrRyanroberson1 4 роки тому

      Gougu theorem when

    • @videolome
      @videolome 4 роки тому +2

      Let me explain. If N is the number we are studying, we can easily show that
      N == 0 mod 4
      N == 0 mod 25
      For the second one, prove that 5 divides the sum of any two consecutive terms.

  • @fredfrancium
    @fredfrancium 4 роки тому +2

    I am really glad to see such people on youtube :)

  • @karthikkrishnaswami3164
    @karthikkrishnaswami3164 4 роки тому +5

    5^2 is 1 mod 8,5^574 is 1 mod 8 so 5^575 is 5 mod 8

  • @dkravitz78
    @dkravitz78 2 роки тому

    Once you had 505 times the sum of four numbers, you could have divided by 5 and said 5X mod 100= X mod 20. That is much easier to calculate because 3^4=1 mod 20.

  • @joaopedrobmenezes2977
    @joaopedrobmenezes2977 4 роки тому +3

    And also, congratulations , a few more subscribers and you will reach 100k!

  • @Archik4
    @Archik4 4 роки тому +1

    last 3 digit: 500
    c++ help calculate last 6 digit: 768500

  • @lyudvigfeyerbax8659
    @lyudvigfeyerbax8659 2 роки тому

    Very good!

  • @cheaterman49
    @cheaterman49 4 роки тому +19

    I just love how you keep saying "Fermat's little theorem" - I mean, there's probably a good reason (like Fermat has a "big theorem" or something) but it's still a very cute name for such a sharp and powerful theorem hahaha!

    • @demenion3521
      @demenion3521 4 роки тому +9

      it's to distinguish it (FlT) from fermat's last theorem (FLT)

    • @cheaterman49
      @cheaterman49 4 роки тому

      @@demenion3521 I see, thanks for the info!

    • @shivansh668
      @shivansh668 4 роки тому

      @@demenion3521 👍

    •  4 роки тому +2

      Incidentally his little theorem is much more useful.

    • @CauchyIntegralFormula
      @CauchyIntegralFormula 4 роки тому +3

      Little Fermat's Theorem is quite useful!

  • @chamelius
    @chamelius 4 роки тому +4

    So, what I have found out is:
    I really need to work on my Number Theory proficiency.

  • @rshkar1999
    @rshkar1999 4 роки тому +3

    What about the FIRST two digits?

    • @haleshs66
      @haleshs66 4 роки тому +5

      That is left as a homework assignment to the viewers.

    • @Notthatkindofdr
      @Notthatkindofdr 4 роки тому

      The last term in the sum is far larger than all the others, so the first digits are just determined by 3^(7^2020). Inspired by a calculation by @OscarCunningham in answer to another question in these comments, we can use software to calculate 7^2020*log(3) and remove the integer part, which tells us that 3^(7^2020) = 10^(0.120362185117...) times a huge power of 10, so calculating this we find the first several digits are 1319356573....

    • @speedsterh
      @speedsterh 3 роки тому

      @@haleshs66 Ah, I see you found a brilliant way to find them, but no room to write the solution in the margin ?

  • @ВасилийТёркин-к8х
    @ВасилийТёркин-к8х 4 роки тому

    finaly a good place to start

  • @sinecurve9999
    @sinecurve9999 4 роки тому

    Wow! Fantastic!

  • @petersiracusa5281
    @petersiracusa5281 2 роки тому

    hmm. The given tool doesn't use mod of Phi, but the solution does.

  • @francescomerenda6985
    @francescomerenda6985 4 роки тому +1

    I'm not super confident with this kind of problems, but is there a reason behind the nice fact that the sum of 7^1, 7^2, 7^3, 7^4 mod 40 is 40? Or it's just coincidental?

    • @toriknorth3324
      @toriknorth3324 4 роки тому +5

      It's because 7^4 = 1 (mod 40). From group theory that means 7 is a fourth root of 1 mod 40 and the sum of all roots gives 0.
      If we use algebra and the geometric sum formula instead,
      7^1 + 7^2 + 7^3 + 7^4
      = 7^0 + 7^1 + 7^2 + 7^3 (since 7^4 = 1 = 7^0 (mod 40))
      = (7^4 - 1)/(7 - 1) (by the geometric sum formula)
      = (7^0 - 1)/(7 - 1) (7^4 = 1 = 7^0 (mod 40) again)
      = 0/6 = 0 = 40 (mod 40)

    • @francescomerenda6985
      @francescomerenda6985 4 роки тому

      @@toriknorth3324 Thank you!

  • @antoniussugianto7973
    @antoniussugianto7973 4 роки тому

    Tell me what is the largest known full reptend prime ? Why 7 is the only known mersenne prime that is also a full reptend prime ? (M_57885161 , M_74207281 , M_77232917 and M_82589933 are not full reptend)

  • @autishd
    @autishd 2 роки тому

    This could have been simplified by noting that 505 and 100 are both divisible by 5. Which would mean we could solve this mod 20, vastly simplifying the calculations.

  • @VerSalieri
    @VerSalieri 4 роки тому

    When will you bring the backflip back? It’s been a while.

  • @FedeMumble
    @FedeMumble 4 роки тому

    phenomenal

  • @mcwulf25
    @mcwulf25 3 роки тому

    All those 3s and 7s and the answer is a multiple of 100!

  • @elkincampos3804
    @elkincampos3804 4 роки тому

    We take Z/100Z~Z/25Z+Z/4Z then (Z/100)*~Z/20Z+Z/2Z therefore if (a,100)=1 then a^20 congruent to 1 mod 100. (The generalization of Fermat theorem with the Chinese theorem of residue.) And if n>=1 then (Z/(2^(n+2))Z)*~Z/(2^n)Z+Z/2Z then if a is odd then a^(2^n) congruent to 1 mod 2^(n+2) indeed if n>1 then 5^(2^(n-1)) is not congruent to 1 mod 2^(n+2). if p is odd prime and n>0 then (Z/p^(n+1))*~Z/((p-1)p^n)Z

  • @markregev1651
    @markregev1651 4 роки тому

    We are given 100 non-collinear points on a plane. Prove that the amount of acute triangles don't exceed 70%.
    A hint is to consider groups of five points first

    • @bsmith6276
      @bsmith6276 4 роки тому

      What if all 100 points are on a common semicircle, then every possible triangle of three points would be obtuse.

    • @markregev1651
      @markregev1651 4 роки тому

      @@bsmith6276 sorry, I meant acute...

  • @hbarudi
    @hbarudi 4 роки тому

    3^7=2187. Sum n=1 to 2020 of (2187^n). 2187*(1-(2187^2019)/1-2187) = A 6,477 digit number. 1.4285372797592599083258606177361e+6743 what your calculator gives out but does not show the last 2 digits. We have to use the proof in the video to get the last 2 digits.

  • @HeyKevinYT
    @HeyKevinYT 4 роки тому +8

    (Spoiler alert)
    Woww that entire sum is divisible by 100 🤯

  • @rishavmullick814
    @rishavmullick814 4 роки тому

    I think it would be simpler to just notice it's divisible by both 25 and 4

  • @johnloony68
    @johnloony68 4 роки тому +1

    I don't know about that complicated Euler and phi stuff; I just calculated the first 4 terms mod100. 3^7=2187, and then the second term is 87^7 which is 83. The third term is 83^7 which is 27, and the fourth term is 27^7 which takes us back to 03. The first 4 terms add up to 200, and there is a multiple of 4 terms in the sum, so it is just 00. I did the whole thing in about 2 minutes without using any more complicated stuff.

  • @debayuchakraborti1963
    @debayuchakraborti1963 4 роки тому +1

    I saw the qn and I was like " aaahh it must use the Euler totient " I still wonder should I use the uppercase Phi or the lowercase one?

  • @prag9582
    @prag9582 5 місяців тому

    We want to know N mod 100
    Using the formula for the sum of the terms of a GP, N can be written as 3^7*((3^7)^2020-1)/(3^7-1)
    Inspecting 3^7 mod 100 = 2187 mod 100 = -13 mod 100
    Inspecting powers of 13:
    13 = 13 mod 100
    13^2 = 169 mod100 = 69 mod 100
    13^3 = 2197 mod 100 = -3 mod 100
    Now we can manipulate 3^7*((3^7)^2020-1)/(3^7-1) mod 100 replacing 3^7 mod 100 by (-13) mod 100 and 13^3 mod 100 by (-3) mod 100.
    In the end, we obtain:
    N = 13 * (3^6*13^2-1)/(14) mod 100
    Then we factor (3^6*13^2-1) as (3^3*13-1)*(3^3*13+1), obtianing N = 13 * (3^3*13-1)*(3^3*13+1)/(14) mod 100
    Computing 3^3*13 = 27*13 = 351, which implies:
    N = 13 * (350)*(352)/(14) mod 100
    N = 13 * (7*50)*(2*176)/(7*2) mod 100
    N = 13 *50*(176) mod 100
    N = 13 *50*(2*98) mod 100
    N = 13 *100*98 mod 100
    Since N mod 100 is a multiple of 100, the rest is 0.
    The answer is: the 2 last digits of N are 00.

  • @rafael7696
    @rafael7696 4 роки тому

    Nice problem

  • @OscarYourFavoriteMexican
    @OscarYourFavoriteMexican 4 роки тому

    Why do we consider 7;9;23;1 instead of just 7;9;3;1?

  • @johnloony68
    @johnloony68 4 роки тому

    If you want the last 3 digits, it's 900. It goes in a similar 4-cycle of 187, 083, 627, 003

  • @deemeeejelic8932
    @deemeeejelic8932 4 роки тому

    16:11

  • @user-A168
    @user-A168 4 роки тому

    Good

  • @chhabisarkar9057
    @chhabisarkar9057 4 роки тому +5

    Dr penn , since you love floor functions so much , here's another floor function problem from the Indian national maths olympiad 2014 problem 2
    Let n be a natural (positive integer) number , prove that floor(n/1) + floor(n/2) + floor(n/3) + floor(n/4) + .... + Floor (n/n) + floor(√n) is even .
    I'm suggesting INMO problems for such a long time , please check them out , it's a humble request , thank you.

  • @АманжолЖекенов
    @АманжолЖекенов 4 роки тому

    👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍 wonderful

  • @Alexagrigorieff
    @Alexagrigorieff 4 роки тому

    There's obnoxious static in the microphone.

  • @adsdentiste
    @adsdentiste 4 роки тому

    Με αυτό που διευκρινιζεις στην αρχή τι εννοείς ως προς τους εκθέτες δεν το συμβολίζεις σωστά, είσαι λάθος , κλπ κλπ το καταλαβαίνεις φυσικά γιναυτο κάνεις την διευκρίνιση

  • @cheaterman49
    @cheaterman49 4 роки тому +1

    0:28 Aaaaand this is where you lost most people, hahaha. Still looks like a lot of fun, so I'll keep watching :-)
    EDIT: Looks like a sick powerful theorem though, I might want to check your proof just for fun too!
    EDIT2: Turns out it wasn't that hard to follow! Thanks for the great video!

  • @Meverynoob
    @Meverynoob 4 роки тому

    I'm a big rere, I somehow thought that 3^7^2 is 3^14 and went about solving that version. Welp I don't know totient func so I have my own excuses

  • @giuseppebassi7406
    @giuseppebassi7406 4 роки тому

    Easy this time, solved in under than 3 minutes (I used a different approach, faster)

  • @billyjames3046
    @billyjames3046 4 роки тому

    7^3 is 43 mod 100, not 23

    • @rain2001
      @rain2001 4 роки тому

      mod 40, not mod 100

  • @joelhoeve
    @joelhoeve 4 роки тому

    Anticlimatic omg

  • @yahavitah2791
    @yahavitah2791 4 роки тому

    2020 wasn't hard enough?

  • @shoykotrayhan650
    @shoykotrayhan650 4 роки тому

    ❤️❤️❤️❤️❤️

  • @Qbe_Root
    @Qbe_Root 4 роки тому

    I just went with the series of 3^(7^n)) mod 100 using the fact that 3^(7^(n+1)) = (3^(7^n))^7
    3^7 ≡ 87 (mod 100)
    3^(7^2) ≡ 87^7 ≡ 83 (mod 100)
    3^(7^3) ≡ 83^7 ≡ 27 (mod 100)
    3^(7^4) ≡ 27^7 ≡... 3 (mod 100)
    Then it loops around since 3^(7^5) ≡ 3^7 (mod 100), so we can rewrite the sum a bit:
    sum(n = 1; 2020; 3^(7^n)) = sum(n = 0; 504; 3^(7^(4n+1)) + 3^(7^(4n+2)) + 3^(7^(4n+3)) + 3^(7^(4n+4))) ≡ sum(n = 0; 504; 87 + 83 + 27 + 3) ≡ sum(n = 0; 504; 0) ≡ 0 (mod 100)

  • @АманжолЖекенов
    @АманжолЖекенов 4 роки тому

    Nice

  • @ignaciorodriguez639
    @ignaciorodriguez639 4 роки тому

    Another exercise
    Find the last three digits of N
    The video gives 2/3 of the work already done ;)

  • @douglasbrinkman5937
    @douglasbrinkman5937 4 роки тому

    1 min in and i'm already lost....

  • @onderozenc4470
    @onderozenc4470 3 роки тому

    Nice shave....

  • @jacobcoolguy
    @jacobcoolguy 4 роки тому

    Can you just.. look into the camera for a second? And say nice things

  • @shubhayubasak8909
    @shubhayubasak8909 4 роки тому +1

    A nice question but it was relatively easier ...... (solved it)....

  • @djvalentedochp
    @djvalentedochp 4 роки тому

    nice hairdo

  • @udic01
    @udic01 4 роки тому

    Nice haircut