Can you Solve Cambridge University Entrance Exam ? | Find x=?

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 10

  • @mdyankee55
    @mdyankee55 Місяць тому +3

    Rewrite as x^3 -x^2 + 2x - 24 = 0. By rational root theorem, any possible rational roots would come from (+/-) 1, 2, 3, 4, 6, 8, 12, or 24. A little trial and error lead to +3 as a rational solution. By synthetic division, you can rewrite x^3 -x^2 + 2x - 24 as (x -3) (x^2 + 2x +8). The roots of x^2 + 2x +8 can be found with the quadratic formula. So the three solutions are x = 3 or x = 1 ± i√7)

  • @에스피-z2g
    @에스피-z2g Місяць тому +4

    x^3-x^2+2x-24=0
    (x-3)(x^2+2x+8)=0
    x=3 or x=-1+irt7
    or x=-1-irt7

  • @tontonbeber4555
    @tontonbeber4555 Місяць тому

    Yes, I can.

  • @key_board_x
    @key_board_x Місяць тому +1

    x³ - x² + 2x = 24
    x³ - x² + 2x - 24 = 0 → the aim, if we are to continue effectively, is to eliminate terms to the power 2
    Let: x = z - (b/3a) → where:
    b is the coefficient for x², in our case: - 1
    a is the coefficient for x³, in our case: 1
    x³ - x² + 2x - 24 = 0 → let: x = z - (- 1/3) → x = z + (1/3)
    [z + (1/3)]³ - [z + (1/3)]² + 2.[z + (1/3)] - 24 = 0
    [z + (1/3)]².[z + (1/3)] - [z² + (2/3).z + (1/9)] + 2z + (2/3) - 24 = 0
    [z² + (2/3).z + (1/9)].[z + (1/3)] - z² - (2/3).z - (1/9) + 2z + (2/3) - 24 = 0
    [z³ + (1/3).z² + (2/3).z² + (2/9).z + (1/9).z + (1/27)] - z² - (2/3).z - (1/9) + 2z + (2/3) - 24 = 0
    z³ + z² + (1/3).z + (1/27) - z² - (2/3).z - (1/9) + 2z + (2/3) - 24 = 0
    z³ + (5/3).z - (632/27) = 0 ← no term to the power 2
    z³ + (5/3).z - (632/27) = 0 → let: z = u + v
    (u + v)³ + (5/3).(u + v) - (632/27) = 0
    (u + v)².(u + v) + (5/3).(u + v) - (632/27) = 0
    (u² + 2uv + v²).(u + v) + (5/3).(u + v) - (632/27) = 0
    (u³ + u²v + 2u²v + 2uv² + uv² + v³) + (5/3).(u + v) - (632/27) = 0
    u³ + v³ + 3u²v + 3uv² + (5/3).(u + v) - (632/27) = 0
    u³ + v³ + 3uv.(u + v) + (5/3).(u + v) - (632/27) = 0
    u³ + v³ + (u + v).[3uv + (5/3)] - (632/27) = 0 → supose that: [3uv + (5/3)] = 0 ← equation (1)
    u³ + v³ + (u + v).[0] - (632/27) = 0
    u³ + v³ - (632/27) = 0 ← equation (2)
    Then you get a system of 2 equations
    (1): [3uv + (5/3)] = 0
    (1): 3uv = - 5/3
    (1): uv = - 5/9
    (1): u³v³ = - (5/9)³ ← this is the product P
    (2): u³ + v³ - (632/27) = 0
    (2): u³ + v³ = 632/27 ← this is the sum S
    u³ & v³ are the solution of the equation:
    a² - Sa + P = 0
    a² - (632/27).a - (5/9)³ = 0
    Δ = (- 632/27)² - 4.[1 * - (5/9)³] = (632²/27²) + (500/729) = 399924/27² = (138²/27²) * 21
    a = [(632/27) ± (138/27)√21]/2
    a = (316/27) ± (69/27)√21
    a = (316 ± 69√21)/27
    u³ = (316 + 69√21)/27 → u = [(316 + 69√21)/27]^(1/3)
    v³ = (316 - 69√21)/27 → v = [(316 - 69√21)/27]^(1/3)
    Recall: z = u + v
    Recall: x = z + (1/3)
    x = [(316 + 69√21)/27]^(1/3) + [(316 - 69√21)/27]^(1/3) + (1/3)
    x = 3
    Resart from the equation:
    x³ - x² + 2x - 24 = 0 → we've seen that 3 is a root, so you can factorize: (x - 3)
    (x - 3).(x² + ax + 8) = 0 → you expand
    x³ + ax² + 8x - 3x² - 3ax - 24 = 0 → you group
    x³ + x².(a - 3) + x.(8 - 3a) - 24 = 0 → you compare with: x³ - x² + 2x - 24 = 0
    For x² → (a - 3) = - 1 → a = 2
    For x → (8 - 3a) = 2 → - 3a = - 6 → a = 2 (of course because above)
    (x - 3).(x² + ax + 8) = 0 → where: a = 2
    (x - 3).(x² + 2x + 8) = 0
    First case: (x - 3) = 0 → x = 3 ← this is the first root calculated according to Cardan' method
    Second case: (x² + 2x + 8) = 0
    x² + 2x + 8 = 0
    Δ = (2)² - (4 * 8) = 4 - 32 = - 28 = 28i²
    x = (- 2 ± i√28)/2
    x = (- 2 ± 2i√7)/2
    x = - 1 ± i√7
    x = - 1 + i√7 ← this is the second root
    x = - 1 - i√7 ← this is the third root

    • @superacademy247
      @superacademy247  Місяць тому

      Thanks for detailed explanation 🙏💕💯🥰✅💪

  • @jjkk134
    @jjkk134 Місяць тому +1

    not 14.50 but half of minutes

  • @walterwen2975
    @walterwen2975 Місяць тому +1

    Cambridge University Entrance Exam: x³ - x² + 2x = 24; x =?
    x³ - x² + 2x - 24 = 0, x³ - 27 - x² + 2x + 3 = (x³ - 3³) - (x² - 2x - 3) = 0
    (x - 3)(x² + 3x + 9) - (x - 3)(x + 1) = (x - 3)(x² + 2x + 8) = 0
    x - 3 = 0; x = 3 or x² + 2x + 8 = 0, (x + 1)² = - 7 = (i√7)²; x = - 1 ± i√7
    Answer check:
    x = 3: x³ - x² + 2x = x(x² - x + 2) = 3(9 - 3 + 2) = 3(8) = 24; Confirmed
    x = - 1 ± i√7: x² + 2x + 8 = 0; x² = - 2x - 8
    x³ - x² + 2x = x(x² - x + 2) = x(- 2x - 8 - x + 2) = - 3x(x + 2)
    = - 3(- 1 ± i√7)(- 1 ± i√7 + 2) = - 3(- 1 ± i√7)(1 ± i√7) = - 3(- 8) = 24; Confirmed
    Final answer:
    x = 3; Two complex value roots, x = - 1 + i√7 or x = - 1 - i√7

  • @ressouguerrier6043
    @ressouguerrier6043 Місяць тому

    x³-x²+2x=24; solution; x(x²-x+2)=24; x=24; x²-x+2=24;x²-x=24-2;x²-x=20; x²-x=20; x²-x-20;x²-x-16-4=0;x²-x-4²-4=0; x²-4²-x-4=0; (x-4)(x+4)-(x-4)=0; (x-4)[x+4-1]=0; x-4=0; x=4; x+3=0; x=-3; S={-3; 4;24}.

  • @ShriH-d1o
    @ShriH-d1o Місяць тому

    x^3-x^2+2x-24=0=(x+a)(x^2+bx+c);=> {ac=-24; abx+cx=2x;(ab+c)=2; ax^2+b^x^2=- x^2 (a+b=-1) => a=-3; b=2; c= 8;} =>Eqn.=> (x-3)(x^2+2x+8)=0