Graph Neural Networks (GNN) using Pytorch Geometric | Stanford University

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 34

  • @xiaoyumo7403
    @xiaoyumo7403 4 роки тому +102

    PyG starts from 33:33

  • @alirezasamadi5804
    @alirezasamadi5804 2 роки тому +10

    AMAZING ... all tutorials start with either very basic level and leave u high and dry when it reaches to actual point, or they start with a point that u don't have any idea... this tutorial is amazing

  • @SRV902
    @SRV902 4 роки тому +20

    CrossEntropyLoss already does log softmax behind the scenes. On top of that F.softmax is applied at the end of the model forward which is not needed if nn.CrossEntropyLoss is used. This is before PyTorch Geometric is introduced

    • @SteveSperandeo
      @SteveSperandeo 11 місяців тому +3

      No only not needed, but 2x softmax will break your model.

  • @JD-ru1xd
    @JD-ru1xd 2 місяці тому

    Really great lecture content and lecturer.

  • @williamashbee
    @williamashbee 3 роки тому +6

    i'm unworthy of this presentation. good job.

  • @m.khanmohamadi9815
    @m.khanmohamadi9815 Рік тому

    Thank you very much. it was very good tutorial of gnn neural network

  • @陈啸-b2x
    @陈啸-b2x 4 роки тому +3

    Really good tutorial.

  • @hiro_happysky12
    @hiro_happysky12 2 роки тому +1

    Thanks for this amazing tutorial!! was really helpful for me☺

  • @jinchenghuang3755
    @jinchenghuang3755 3 роки тому +2

    There is something to simplify :nn.CrossEntropy = F.nll_loss(F.log_softmax(x), label)

  • @sumitkumar-el3kc
    @sumitkumar-el3kc 4 роки тому +7

    Can anyone please tell me the prerequisites to start with GNN? I'm new to neural networks. Although I have some experience in ML but neural networks are still new to me.

    • @spartacusche
      @spartacusche 2 роки тому +2

      you can see the coursera course deep learning, or cs229 stanford

  • @joemeyer9655
    @joemeyer9655 5 місяців тому

    Nice!

  • @stevegabrial1106
    @stevegabrial1106 3 роки тому +3

    Hi
    Plz upload more videos of Ml, DL by Stanford . thx

  • @prajwol_poudel
    @prajwol_poudel 2 роки тому +1

    Hey, do you have more tutorials in coding from cs22aw like these?
    If anyone knows where I can find more coding playlist please share.

  • @brandomiranda6703
    @brandomiranda6703 3 роки тому

    what is the best GNN library as of now 2021 for PyTorch?

    • @mhadnanali
      @mhadnanali 3 роки тому

      i have the same question

  • @CXL601
    @CXL601 4 роки тому

    model = pyg_nn.GAE(Encoder(dataset.num_features, channels)).to(dev)
    model.split_edge(data)
    --- get error saying ''GAE' object has no attribute 'split_edges'",
    Just checked the documentation, it is true that the latest version of GAE object doesn't have 'split_edges' functions.
    so random split?

    • @CXL601
      @CXL601 4 роки тому +2

      oh, it is negative sampling

  • @jz7327
    @jz7327 3 роки тому

    I'm wondering why that pool layer is necessary for the graph level task? Can't we just use some linear layers to predict some property that corresponds to the whole graph? Somebody can help me with this? Ty!

    • @jz7327
      @jz7327 3 роки тому +2

      I think it's due to the dimension? For graph level tasks we want the whole graph represented by a vector, so this pooling is transferring the node embedding matrix to a vector?

    • @laurasnow7822
      @laurasnow7822 Рік тому +2

      I’m like two years late to this question, but the node property matrix will be of different dimension for each graph size, so we can’t train a neural network on it directly. We could train a sequential neural network, but we don’t want to get different results based different edge orderings. The most naive approach would be to just take a sum or average of all node embedding and use that as a graph embedding. It might be enough in some cases.

    • @mimiphan1602
      @mimiphan1602 Місяць тому

      pool is necessary when ure dealing with sequenced data like queries

  • @TechVizTheDataScienceGuy
    @TechVizTheDataScienceGuy 4 роки тому +1

    👍

  • @ВадимШатов-з2й
    @ВадимШатов-з2й 4 роки тому

    hey, what about other seminar tapes from the cs224w?

    • @lindseyai4843
      @lindseyai4843  4 роки тому +3

      You can find them here:
      snap.stanford.edu/class/cs224w-videos-2019/

    • @aidasadeghi2147
      @aidasadeghi2147 Рік тому

      hey the link is private is there any public?
      @@lindseyai4843

    • @pablobanchero3812
      @pablobanchero3812 8 місяців тому

      @@lindseyai4843 Can you tell us the username and password?

  • @dam1an096
    @dam1an096 3 роки тому

    gg, good tutorial ✌

  • @vincentedeh3926
    @vincentedeh3926 3 роки тому

    How do i download the code used in the presentation?

  • @tongliu5755
    @tongliu5755 4 роки тому +4

    码一下

  • @expectopatronum2784
    @expectopatronum2784 6 місяців тому