R8. Cart and Pendulum, Lagrange Method

Поділитися
Вставка
  • Опубліковано 1 лют 2025

КОМЕНТАРІ • 22

  • @georgesadler7830
    @georgesadler7830 3 роки тому +2

    Professor Vandiver, thank you for another classic MIT recitation on the Cart, Pendulum and Lagrange Method and it's power impact on Engineering Dynamics.

  • @jonahum92
    @jonahum92 9 років тому +3

    Wow! Incredible! Thank you very much. I start to see the power of the Lagrangian method!

  • @ricardovega1407
    @ricardovega1407 10 років тому +13

    MIT makes it look harder than what it actually is

  • @Aaaaaaaaaaaaaamin
    @Aaaaaaaaaaaaaamin 4 роки тому +2

    😍😍😍Covid confinement and i am learning lagrange as if....

  • @thomash9008
    @thomash9008 2 роки тому

    If you're finding v_G/O confusing, consider writing down r_G/A, and taking a derivative.

  • @suryavanshikartik
    @suryavanshikartik 7 років тому +4

    why is the kinetic energy due to rotation of the rod is calculated about G and not A ?

    • @suryavanshikartik
      @suryavanshikartik 7 років тому

      is it because the OvG accounts for translation and omega wrt G accounts for roation ?

    • @asabluexx
      @asabluexx 7 років тому +3

      The motion of the rod can be viewed by 2 ways.
      One is the rotation motion about G + the translation motion about G.
      The other one is the rotation motion about A.
      This prof. used way 1.
      And your thinking is way 2.
      These 2 ways are identical.

    • @suryavanshikartik
      @suryavanshikartik 7 років тому +1

      Yes, I understood it later! Thanks

    • @frederikrentzsch9737
      @frederikrentzsch9737 6 років тому

      I know it's been a while since this was answered but maybe others will read it and get confused. Therefore: THIS IS NOT TRUE. The 2. way you mentioned will give you the wrong result for the kinetic energy, because point A is moving. Prof. Vandiver mentioned it even during the lecture at around 10:25

    • @oyyy-ch9gx
      @oyyy-ch9gx 3 роки тому

      @@frederikrentzsch9737 What if in the term of the motion about the x axis of the entire system we include both the rod and the cart masses, so that we get
      (1/2)(M+m)x_dot^2 ?
      Can we then use the parallel axis theorem to express the rotational kinetic energy of the rod as
      (1/2)(1/3)mL^2(theta_dot)^2 = (1/6)mL^2(theta_dot)^2 ?
      I feel like this should work

  • @canberkfidan
    @canberkfidan 9 років тому

    Hi, I just wondered why didn't we account the unstrected length of the spring. Thanks for the great video by the way. :)

    • @tabhashim3887
      @tabhashim3887 2 роки тому +1

      You probably don't care anymore, but for anyone asking the same question: The spring applies a force when it is stretched past its natural length. So when it is unstretched, there is no force, and thus, no potential energy.

    • @theastuteangler
      @theastuteangler Рік тому

      @@tabhashim3887 legendary

  • @josuemanuelparejacontreras3443
    @josuemanuelparejacontreras3443 4 роки тому

    i didn't understand clearly why at 10:20 the angular momentum of H is at G but not at A....so the inertia matrix will be also with respect to rotating point A... can someone give a hand?? :D

    • @jes_us9
      @jes_us9 4 роки тому +3

      En videos pasados, se mostró un ejemplo donde el profesor lanza un disco en el aire y menciona que cuando el cuerpo rígido se traslada y rota a la vez, entonces, el cuerpo rota y se traslada con respecto a su centro de masa, por lo que en este caso, el momento angular debe ser también con respecto a G para describir la rotación

  • @MrFarzadSA
    @MrFarzadSA 10 років тому +2

    I think one part is missing in the solution and one of the students also raises this issue in the 24th min of the video.

  • @rushi00717
    @rushi00717 2 роки тому

    GATE ME 2021 same question..

  • @smolburger6863
    @smolburger6863 Рік тому +2

    garkein drip diggah

  • @bestcakesdesign
    @bestcakesdesign 3 роки тому

    Gate exam copied it.

  • @bestcakesdesign
    @bestcakesdesign 3 роки тому

    Mit me board hota h