Laplace Equation

Поділитися
Вставка
  • Опубліковано 9 січ 2025

КОМЕНТАРІ • 129

  • @OswaldChisala
    @OswaldChisala 7 років тому +297

    Without imputing disrespect on other schools, I can tell quite easily from this video that MIT has incredible professors. Thank you for open-sourcing your content, it is going a long way to educate the interested among us. My regards, Oswald.

    • @markus-sagen
      @markus-sagen 7 років тому +3

      Oswald Chisala couldnt Agree more!

    • @videofountain
      @videofountain 7 років тому +3

      I enjoy listening to Mr. Strang. I wish he would make a statement about the excellent teachers he has experienced. Perhaps he already has. I would venture to guess he has experienced excellent learning inside and outside of MIT. He and others are great inspiration.

    • @1mol831
      @1mol831 2 роки тому +1

      I'm just watching because the professors in my university has forgotten to do lectures about these, they are still coming up on the test, gotta do them anyways.

    • @owen7185
      @owen7185 2 роки тому

      Couldn't agree more

  • @adoniasyoseph3290
    @adoniasyoseph3290 7 років тому +25

    This man comes from another planet. You are the best teacher .

  • @sjn7220
    @sjn7220 3 роки тому +17

    0:18 When he said I don’t have time, I thought this video was going to be over.

  • @manugupta1958
    @manugupta1958 7 років тому +141

    Today in 13min:16 second I learned something about Laplace equation, fourier series and it's application to PDE that I couldn't learn in a whole semester.
    Thank you MIT.

    • @wl4131
      @wl4131 6 років тому

      Indeed

    • @niranjanarunkshirsagar
      @niranjanarunkshirsagar 5 років тому +4

      You are absolutely right Manu. Our Indian education system is fallible, I got the same experience, my college lecturers never taught me that I am learning here on UA-cam from MIT and Stanford open lectures. They are offering the greatest services to mankind.

    • @linranwu4940
      @linranwu4940 2 роки тому

      same here

  • @SnydeX9
    @SnydeX9 5 років тому +47

    God bless this man and whoever made this available.

  • @chargeeverywhere
    @chargeeverywhere 7 років тому +49

    This is how teaching should be done! So clear for once!

    • @akhildhatterwal3785
      @akhildhatterwal3785 4 роки тому

      I think teaching is done in this way everywhere

    • @zakmatew
      @zakmatew 3 роки тому +3

      @@akhildhatterwal3785 Not really

  • @shakennotstired8392
    @shakennotstired8392 2 роки тому +10

    I have gained much better insight from these videos. Thanks, professor Strang and MIT. I am forever grateful.

  • @tariqandrea398
    @tariqandrea398 2 місяці тому

    This absolutely floored me. It is dazzling in its clarity and simplicity. Unbelievable.

  • @dangakong6304
    @dangakong6304 Рік тому +1

    Thanks to MIT, am capturing lectures across the continent in one of the world best universities . Thank you MIT. Thank you USA.

  • @shubhgupta6110
    @shubhgupta6110 5 років тому +13

    Explaining concepts with such elegance.

  • @michaelangaloe
    @michaelangaloe 2 роки тому +5

    If someone asked me to describe a mathematician, It'd be Gilbert for sure.

  • @georgesadler7830
    @georgesadler7830 3 роки тому +2

    This video helps with the introduction to partial differential equations. Laplace equation is well known in partial differential equations. Dr. Strang explains the subject very well.

  • @taewoonglee4894
    @taewoonglee4894 7 років тому +10

    He verifies the quality of his teaching! Fantastic!

  • @juniorcyans2988
    @juniorcyans2988 2 місяці тому

    I watched this video last semester and I couldn't really understand. Now I watched, I could follow completely! Thank Dr. Strang and MIT!

  • @Prophetic_heirs
    @Prophetic_heirs 6 років тому +7

    after listening to prof gilbert in my final year of bachelors I am feeling like mind=blown.

  • @mohammedkhan4990
    @mohammedkhan4990 7 років тому +1

    Dr. strang is the best math professor period. Excellent lecture.

  • @MechanicalEI
    @MechanicalEI 5 років тому +7

    Sir, Great Video. The illustration and example of the Laplace Equation were perfectly supported by your explanation. Thanks for uploading!

  • @turokg1578
    @turokg1578 Рік тому +2

    he's retired yet we're still learning from him

  • @MaxvonHippel
    @MaxvonHippel 7 років тому +3

    This is a superb lecture, thank you very much. - a pure maths major from Arizona

  • @amberliu3154
    @amberliu3154 5 років тому +6

    He is such a great professor!!!!! It makes so sense though his lecture.

  • @parianhatami
    @parianhatami 6 місяців тому

    I love you prof. Strang! I needed this concept & no context could help me as much as you did!

  • @Keeper.AFOL5
    @Keeper.AFOL5 15 днів тому +1

    Thank you for making this available. It is a big help in understanding and explaining this section.

  • @brocktj4
    @brocktj4 3 роки тому

    Dr. Strang truly is the GOAT.

  • @saptarshipaul1928
    @saptarshipaul1928 5 років тому +6

    Every video starts with 'OKAY!!' :D

  • @maudentable
    @maudentable Рік тому +1

    Gilbert Strang is the original kungfu master of mathematics. He is not a common textbook reader like the majority.

  • @gangadharjha1406
    @gangadharjha1406 4 роки тому

    All the college maths teachers should watch and learn from this video before teaching

  • @DJ-yj1vg
    @DJ-yj1vg 2 роки тому

    Bringing back the cool to maths, one lecture at a time.

  • @vaibhavshukla6926
    @vaibhavshukla6926 4 роки тому +2

    Thank you so much. I am so happy right now. Professor, you made this so EASY.

  • @backlash67
    @backlash67 8 років тому +52

    I love this man

  • @jupiter7795
    @jupiter7795 7 років тому +15

    Careful, he starts going all "Final Solution" at 6:25.

  • @nicomcmahon2491
    @nicomcmahon2491 2 роки тому +1

    So accessible!! I wish my profs lectured like this!

  • @quantummath
    @quantummath 5 років тому +1

    lovely teaching method, more power to you Prof. Strang

  • @deday6525
    @deday6525 4 роки тому +1

    1:31 , why when u equal x, the second derivatives will be zero 0?
    thanks in advance

  • @KanalDerGutenSache
    @KanalDerGutenSache 3 роки тому +2

    Does the infinite family of b's provide you with infinite amounts of honey?

  • @nandakumarcheiro
    @nandakumarcheiro Рік тому

    Combined effect of the Laplace equation and applying boundary conditions of wave theory reflects in energy amplification of crazy polynomials of real part and imaginary becomes an exponential function from logarithmic incrementa forming an exponential jump and collapse between a cos theta wave and sine theta waves promoting unimaginable amplification promoting a Psunami effect as boundary condition by merging by symmetry Fourier series.

  • @allandavis6116
    @allandavis6116 2 роки тому +1

    Great video - but ... it would be helpful to have a discussion of when a solution exists, e.g. for 2-d circles, and when it doesn't, e.g. irregular boundaries. Also, what if time is a variable? What real world problems have solutions, which don't,, etc.

  • @selfi23
    @selfi23 Рік тому

    Yes Sir , Your Videos was Really Helpful a Lot for 'Sky Wolves' students.... Thank You soooo Much❤❤❤❤

  • @Overlander2022
    @Overlander2022 4 дні тому

    Best professor indeed!

  • @nandakumarcheiro
    @nandakumarcheiro Рік тому

    This may give further information of repeated compression and expansion derivatives involved in Laplace equation assisting Fourier series seems to be more informative.

  • @vaibhavshukla6926
    @vaibhavshukla6926 4 роки тому +1

    Sorry professor but did you mean to say 'steady-state' at 11:37. I think it won't be equilibrium but the temperature along that line will be zero.

    • @robertmines5577
      @robertmines5577 3 роки тому +1

      Yes, steady state is the correct terminology here. Systems can exist at a thermodynamically non-equilibrium steady state. E.G. We can fix the boundary temperatures such that there is a permanent heat flux from one boundary to the other, but after infinitely long time, the entire domain asymptotically approaches a fixed temperature gradient. In short, Laplace's Equation can be viewed as the steady state of the equation dU/dt = d^2 U/dx^2 + d^2 U/dy^2 since the time derivative is set to 0.

  • @hikmatullahpakhtoon3694
    @hikmatullahpakhtoon3694 4 роки тому +1

    Flawless explanation. Thank you professor.

  • @atriagotler
    @atriagotler 3 роки тому +1

    I was strugling with the laplacian and real valued functions. And now I suddenly know the basics up to fourier 😂

  • @AbuSayed-er9vs
    @AbuSayed-er9vs 7 років тому +2

    Excellent video pro.Gilbert and very... thanks for this.

  • @wrox2757
    @wrox2757 2 роки тому

    Oh my! I didn't know this was Gilbert Strang.

  • @axelmeramas976
    @axelmeramas976 4 роки тому +1

    you are a life saver professor , thank you

  • @vidushitripathi2671
    @vidushitripathi2671 3 роки тому +1

    Great teacher... 🙏🏻 Huge respect to you sir...

  • @iam_sketch
    @iam_sketch Рік тому

    It was kind of satisfying when he changed the cordinate system form Cartesian to polar 😌

  • @nandakumarcheiro
    @nandakumarcheiro Рік тому

    The lunar boundary temperature value at the top bottom and inside seems to be surprising by applying Laplace Equation.

  • @hsheng3577
    @hsheng3577 2 місяці тому

    Thanks, Professor Gilbert Strang♥

  • @Yume-x9v
    @Yume-x9v 7 місяців тому

    5x + 10y + 15z = x = y = z = zeros. factorization zeros equation. la place equation.

  • @musicislife665
    @musicislife665 6 років тому

    Congratulation Mr Gilbert Strand and thank you for your lesson.

  • @jaeimp
    @jaeimp 5 років тому

    The null space of the Laplacian operator... Thank you!

  • @WadBex
    @WadBex 5 років тому +1

    Splendid! Keep up the fantastic work!

  • @CatsBirds2010
    @CatsBirds2010 7 років тому +1

    What a GREAT teacher!

  • @Matchless_gift
    @Matchless_gift 5 років тому

    Big fan of prof. Strang, from india

  • @rudhisundar
    @rudhisundar 2 роки тому

    Love you oldie! God bless you!!

  • @pappk.962
    @pappk.962 6 років тому +2

    thank you, perfect and simple explanation

  • @lucasm4299
    @lucasm4299 7 років тому +1

    The real or imaginary part of a holomorphic function is a solution to Laplace's Equation.

  • @finaltheorygames1781
    @finaltheorygames1781 4 роки тому

    I like the elegance in the (x+iy)^n solution, but the infinite sums with cos and sin seem to get messy.

    • @galas062
      @galas062 4 роки тому

      how so?

    • @galas062
      @galas062 4 роки тому

      please explain us about the mess, how you are going to clean it up???? LOL :)

  • @gauthampracharya9592
    @gauthampracharya9592 3 роки тому

    rip saar, I louve ur veedios

  • @robertwilsoniii2048
    @robertwilsoniii2048 6 років тому

    Why not parametrize the boundary in a constrained optimization problem? Or are these things equivalent?

  • @therealrictuar
    @therealrictuar 7 років тому +1

    whoa never thought of it that way

  • @coder1124
    @coder1124 3 роки тому

    Thank you MIT

  • @jaihind3693
    @jaihind3693 8 років тому

    Sir Please make a vedio on E.T Whittakers 1903 Decomposition of scalar potentials, its much related to laplace equations.

  • @dominicj7977
    @dominicj7977 4 роки тому

    Psychologically, people generally find handsome young men talking about mathematics more attractive than fragile old professors. Had this video been done by Zach star or grand Sanderson, it would have won way more likes

  • @omega7377
    @omega7377 7 років тому +4

    Great teacher!

  • @truthtutorials2312
    @truthtutorials2312 3 роки тому

    The infinite me's is the solution to my consciousness.

  • @davidkwon1872
    @davidkwon1872 4 роки тому

    I can’t believe what I watch!!! So shocked!!,

  • @chrispinchirhulwire4923
    @chrispinchirhulwire4923 5 років тому

    a great topic given by great a sir

  • @Crossfire9211
    @Crossfire9211 3 роки тому

    Utterly amazing

  • @PATHMINDER
    @PATHMINDER 3 роки тому

    God bless you;Prof.

  • @XiaosChannel
    @XiaosChannel 8 років тому +1

    hmm, since when theres videos specifically made for... well, online videos instead of lecture recordings?

    • @ghostzart
      @ghostzart 6 років тому

      They've made these sorts of videos since the early 1970s. Search for "OCW Herb Gross" and prepare to be amazed by the intimacy (and weird, black chalk).

  • @alimohammadigheidari2614
    @alimohammadigheidari2614 6 років тому

    Well done Professor.

  • @اجملاغانيلاطفال
    @اجملاغانيلاطفال 2 роки тому +1

    انا أشاهد هذا فيدو من الجزائر

  • @hollywoodundead1010
    @hollywoodundead1010 4 роки тому

    Everyone here smart as fuck, while I came looking for laplaces box from The Gundam series...

  • @saurabhmyblogging
    @saurabhmyblogging 10 місяців тому

    Very nice lecture.

  • @lazykid2677
    @lazykid2677 8 років тому

    Can someone give me the links of all the courses taken by Gilbert Strang ?(without the linear algebra course)

    • @mitocw
      @mitocw  8 років тому +7

      A quick search on our site (ocw.mit.edu) shows these courses and materials (not including linear algebra): 2.087, 18.085, 18.086, RES.18-001, RES.18-005, RES.18-009

  • @ahmedbaig7279
    @ahmedbaig7279 6 років тому

    I also want to know the name of this professor.But my question is that at what level he teaches this peculiar subject of applied mathematics?

    • @mitocw
      @mitocw  6 років тому

      The instructor is Gilbert Strang. He teaches at both the undergraduate and graduate levels (he's even made a special series for high school students). For more info on Gil, here is his bio page: www-math.mit.edu/~gs/

  • @flaxenkj
    @flaxenkj 3 роки тому

    Thank you very much indeed.

  • @erick.gudino
    @erick.gudino 4 роки тому

    thank you this this very useful

  • @libinbabu288
    @libinbabu288 2 роки тому

    Studying in fisat mookanur.hope someone sees it in future

  • @Gravitation3Beatles3
    @Gravitation3Beatles3 7 років тому

    Would you say this concept is hard to grasp for a high school student?

    • @omega7377
      @omega7377 7 років тому +2

      Nope, if he or she already knows about partial derivatives, polar coordinates and eulers formula.

    • @lucasm4299
      @lucasm4299 7 років тому

      Gravitation3Beatles3
      Nope. I'm on the same boat and I also looked into Complex Numbers.

  • @qas168888
    @qas168888 10 місяців тому

    Love love love this one😂

  • @wagsman9999
    @wagsman9999 2 роки тому

    math is beautiful

  • @not_amanullah
    @not_amanullah 4 місяці тому

    This is helpful ❤️🤍

  • @leophysics
    @leophysics 2 роки тому

    Gilbert strang is like Dr strange

  • @nandha0150
    @nandha0150 5 років тому

    Absolutely lovely.

  • @dhanraaj
    @dhanraaj 3 роки тому

    concept building thankyou

  • @algebra5766
    @algebra5766 4 роки тому

    wow this is beautiful ...

  • @vitthalpatil1974
    @vitthalpatil1974 5 років тому

    9:16 dont look so closer .....😂😂

  • @Hobbit183
    @Hobbit183 7 років тому

    i like to see it as the groundwater level in a confined aquifer with steady flow

  • @_chip
    @_chip 8 років тому

    this is just great

  • @Griffatron3000
    @Griffatron3000 5 років тому

    he keeps winking at me

  • @not_amanullah
    @not_amanullah 4 місяці тому

    Thanks ❤️🤍

  • @mikiasaschale5824
    @mikiasaschale5824 4 роки тому

    do this ,,,,,evalute the lablacian 7x^2/x^2+y^2+z^2

  • @iam_sketch
    @iam_sketch Рік тому

    Beautiful

  • @yeechi2398
    @yeechi2398 3 роки тому

    미쳤따리 미쳤따 교수님의 명강에 balls를 탁 치고 갑니다!

  • @mushtaqdass7421
    @mushtaqdass7421 5 років тому

    ,infinite likes sir

  • @devotionalhymns845
    @devotionalhymns845 2 роки тому

    Beautiful 😍

  • @terryhuang6464
    @terryhuang6464 7 років тому

    fantastic