A Short Functional Equation Problem

Поділитися
Вставка
  • Опубліковано 6 лют 2025
  • Given f(g(x) + y) = x + 2y + 3 for all real values of x and y, we evaluate g(f(x) + y).

КОМЕНТАРІ • 53

  • @ktuluflux
    @ktuluflux 3 місяці тому +36

    It felt like we were going in circles but it worked out nicely in the end! Cool problem and a neat idea to use a constant inside. Higher powers may get messy though.

  • @RGP_Maths
    @RGP_Maths 3 місяці тому +11

    Me, looking at the thumbnail: Intuitively, f and g are both linear functions, define some coefficients, quickly solve, but I bet Dr Barker will also prove they were linear.
    Me, watching the video: Yep!
    Well done again, Dr B.

  • @ronbannon
    @ronbannon 3 місяці тому +4

    Again, excellent job. Another gem to share with my students. Thank you!

  • @nathanisbored
    @nathanisbored 3 місяці тому +4

    Functional equation videos like this are my favorite, especially when you are allowed to assume the function is sufficiently “nice” (analytical or something)

    • @DrBarker
      @DrBarker  3 місяці тому +5

      It's nice to be able to do things like differentiate, and can be frustrating if we don't know that a function is differentiable. At the same time, I find it very elegant when there is a solution which only uses very simple operations like substitution.

    • @nathanisbored
      @nathanisbored 3 місяці тому +3

      @@DrBarker I misspoke! I meant to say I prefer when you **arent** allowed to assume that (I typoed and said the opposite of what I meant 🤦). I completely agree with you!

  • @joeistead
    @joeistead 3 місяці тому +4

    Suppose we have some value A for which g(A) = 0. Then f(g(A)+y) = f(y) = A + 2y + 3. But then using the original definition of f given in the problem, f(g(x) + y) = 2(g(x)+y) + A + 3 and we can get g(x) = x/2 - A/2. Using these closed form solutions for f and g to solve for g(f(x)+y), the A terms cancel out and you're left with the desired result.

    • @Notthatkindofdr
      @Notthatkindofdr 3 місяці тому +2

      How do you know such a value of A exists?

    • @joeistead
      @joeistead 3 місяці тому +1

      @@Notthatkindofdr I didn't. It's a bit circular to find the actual value after the fact. I questioned how rigorous I should be about a YT proof. I settled on 'conversational'... so there are holes as you point out :)

    • @boguslawszostak1784
      @boguslawszostak1784 3 місяці тому

      @@Notthatkindofdr g(x) is linear (You can prove it)

  • @KarlFredrik
    @KarlFredrik 3 місяці тому +6

    Solved it by assuming it's linear relations. Nice to see how it's done without guessing.

    • @TechToppers
      @TechToppers 3 місяці тому +1

      You didn't solve it if you make unproved claims

  • @brutusmag1
    @brutusmag1 12 днів тому

    Nicely done!

  • @micknamens8659
    @micknamens8659 3 місяці тому +1

    Shorter path: When we look at the y handling in f(g(x)+y)=x+2y+3 if follows that f doubles it's argument (beside adding some constant c). Because of f(g(x))=x+3 this also means that g devides its argument by 2 (beside adding some constant d, which has to equal (3-c)/2 ).
    The expression g(f(x)+y) is hence 1/2*((2x+c)+y)+(3-c)/2=x+y/2+3/2

    • @irhzuf
      @irhzuf 3 місяці тому

      Can't find a neat counterexample for you, but f(x) could not satisfy f(x+y) = f(x) + f(y) so you have to prove something to get there

    • @micknamens8659
      @micknamens8659 3 місяці тому

      @@irhzuf please be more specific about which step you mean. I don't state that f(x+y)=f(x)+f(y)

    • @boguslawszostak1784
      @boguslawszostak1784 3 місяці тому

      ​@@irhzuf
      In school-level mathematics, the term "linear function" is used more loosely for both forms, y=ax and y=ax+b so for y=ax+b. I prefer the term affine rather than linear.,
      f(g(x)+y)=x+2y+3
      for y=-g(x) : f(g(x)-g(x))=x+2(-g(x))+3
      f(0)=(x-2g(x))+c for any x
      It means x-2g(x) is constant C
      and 2g(x) =C+x
      g(x) =x/2+C/2 {means that g is affine: devides its argument by 2 and then adds some constant }
      for y=0, f(g(x))=x+3=f(x/2+C/2) for any x
      for t=x/2+C/2 we get x=2t-C
      2t-C+3=f(t) { means that f is affine: doubles it's argument and then adds some constant }
      g(f(x)+y)=g(2x-C+3+y)=(2x-C+3+y)/2+C/2=(2x+y+3)/2

  • @MrGeorge1896
    @MrGeorge1896 3 місяці тому +9

    Another method which is even easier:
    f(g(x) + y) = x + 2y + 3
    Using a substitution: g(x) + y = x y = x - g(x)
    f(x) = x + 2x - 2g(x) + 3 = 3x + 3 - 2g(x)
    2g(x) = 3x + 3 - f(x)
    Using another substitution: x = f(x) + y f(x) = x - y
    2g(f(x) + y) = 3x + 3 - x + y = 2x + y + 3
    g(f(x) + y) = (2x + y + 3) / 2
    Edit: In order to not get people confused: The "y" in the second substitution is not identical to the "y" in the original equation. You could replace this y with an arbitrary variable name e.g. "n" and end up with g(f(x) + n) = (2x + n + 3) / 2 instead...

    • @dipankarbanerjee1130
      @dipankarbanerjee1130 3 місяці тому

      Woowww!!! Thank you thank you ❤

    • @yitanjang
      @yitanjang 3 місяці тому

      One should be wary of such abuse of notation.

    • @yitanjang
      @yitanjang 3 місяці тому

      You are already wrong from the first substitution. If x from lhs and rhs of the substitution is the same, it is basically asserting g(x) = x-y, which is clearly not. Try again using a different letter, say g(x) + y = u

    • @MrGeorge1896
      @MrGeorge1896 3 місяці тому

      @@yitanjang I you watch the video carefully you will noticed that Dr Barker did (virtually) the same. He set x to an arbitrary value (zero) while I set y to to an arbitrary term (x - g(x)). This method works fine but there are indeed some caveats (corner cases) which are out of scope here.

    • @yitanjang
      @yitanjang 3 місяці тому

      ​@MrGeorge1896 Ah, i reread your solution, and indeed you are not wrong. That is on my behalf. the substitution was y = x -g(x) which is completely fine to do. I'm really sorry for the fuss

  • @sohaib_mer-
    @sohaib_mer- 3 місяці тому

    what i did is point out how since y isn't involved in the first equation being only an addition, i presumed the function to be linear :
    f(x)= 2x
    f(g(x)+y) = 2(g(x) +3) +2y = x+2y
    thus 2g(x)+3= x
    -> g(x) = (x-3)/2

    • @sohaib_mer-
      @sohaib_mer- 3 місяці тому

      though mine is a bit of cheat , yours definitely solidified the method, great vid

  • @Khashayarissi-ob4yj
    @Khashayarissi-ob4yj 3 місяці тому

    With luck and more power to you.
    hoping for more videos.

  • @aymantimjicht173
    @aymantimjicht173 3 місяці тому

    We supposed that f and defined in R. Df = Dg = R.
    Thank you for the answer.

  • @Homayoun197250
    @Homayoun197250 3 місяці тому

    Nice problem. Thank you.

  • @minhhainguyen1979
    @minhhainguyen1979 3 місяці тому

    ❤❤❤❤❤. Thanks a lot.

  • @mashalrazavi579
    @mashalrazavi579 3 місяці тому

    Tnx for nice equations

  • @joeistead
    @joeistead 3 місяці тому

    Yet another solution: start by noting that from the definition of f, we get f(g(x)+Ky) = x + 2Ky + 3. Intuitively, as you move along the axis by y units, the function f rises by 2y units. This tells us that f is a line, so we can write f(x) = ax+b. Then again using intuition, the only way that f(g(x)+y) could be a line is if g is also a line, so we try g(x) = cx+d and then set about trying to find a,b,c,d. We can solve for a, c, and b+2d by using our closed form f and g to compute f(g(x)+y), which was also given as x + 2y + 3. Plugging all of this into g(f(x)+y) yields the desired result.

    • @DrBarker
      @DrBarker  3 місяці тому +3

      I like the initial argument for why f must be linear! I would write this formally e.g. by setting x = 0, so we start with
      f(g(0) + y) = 2y + 3,
      then replacing y by y - g(0), we get
      f(y) = 2(y - g(0)) + 3 = 2y - 2g(0) + 3 = 2y + constant,
      so f is linear.

    • @boguslawszostak1784
      @boguslawszostak1784 3 місяці тому

      @@DrBarker
      Wjat about this?
      f(g(x)+y)=x+2y+3
      for y=-g(x) : f(g(x)-g(x))=x+2(-g(x))+3
      f(0)=(x-2g(x))+c for any x
      It means x-2g(x) is constant C
      and 2g(x) =C+x
      g(x) =x/2+C/2 {means that g is affine: devides its argument by 2 and then adds some constant }
      for y=0, f(g(x))=x+3=f(x/2+C/2) for any x
      for t=x/2+C/2 we get x=2t-C
      2t-C+3=f(t) { means that f is affine: doubles it's argument and then adds some constant }
      g(f(x)+y)=g(2x-C+3+y)=(2x-C+3+y)/2+C/2=(2x+y+3)/2

  • @AlperenK.
    @AlperenK. 3 місяці тому

    Ooooooh nice!

  • @Nishaan478
    @Nishaan478 3 місяці тому

    can you some bmo1/2 problems please

  • @maklovitz
    @maklovitz 3 місяці тому +1

    Id like to see this kind of problem but with double nested function, e.g. f(g(h(x) + y)))

    • @DrBarker
      @DrBarker  3 місяці тому +1

      This is a really interesting idea! I wonder if we'd need to include 3 variables in order for there to be a unique solution from a single functional equation?

    • @boguslawszostak1784
      @boguslawszostak1784 3 місяці тому

      f(g(h(x) + y)))=ax+by+c
      for y=-h(x)
      f(g(0)))=ax-bh(x)+c=C
      h(x)=(ax+c-C)/b for any x
      for y=0
      f(g(h(x))))=ax+c=f(g((ax-C+c)/b))
      for t=(ax-C+c)/b
      x = (b t - c + C)/a
      f(g(t)=a (b t - c + C)/a+c=bt+C
      So, you only know that the composition of functions f and g is an affine function, and you don’t even know whether the function ff is one-to-one.
      For example, g(x)=atan(x) and f(x)=3tan⁡(x)+4 give an affine function when composed."

    • @boguslawszostak1784
      @boguslawszostak1784 3 місяці тому

      @@DrBarker The problem is not that we have too few variables, but rather that there are no conditions that the composition of functions f and g should satisfy.

  • @tgeofrey
    @tgeofrey 2 місяці тому

    Very hard operators

  • @MrRyanroberson1
    @MrRyanroberson1 3 місяці тому

    f(g(x)+y-g(x)) = x+2(y-g(x))+3; f(y)-2y = x-2g(x)+3; either side must be constant relative to the other, so choose x=0, y=0. f(0)=3-2g(0). Also g(x) = (x-f(0)+3)/2. g(f(x)+y) = f(x)/2+y/2-f(0)/2+3/2. f(x)-x = f(0), so f(x)-f(0) = x, and we get g(f(x)+y) = (x+y-f(0)+3)/2. For g, -2g(0)=y-2g(y); g(y)-g(0) = y/2: g(f(x)+y)=y/2+f(x)/2+g(0); x-f(0)+3=f(x)+2g(0); 2f(0)+2g(0)=3, f(0) must be 0, making g(0) 3/2. g(x)=x/2+3/2 and f(x)=x

    • @MrRyanroberson1
      @MrRyanroberson1 3 місяці тому

      I might have dropped a factor of 2 somewhere, i see now that f and g are at least double these.

  • @aisolutionsindia7138
    @aisolutionsindia7138 3 місяці тому

    think f,g are unique as well: f(x) is 2x and g(x) is (x+3)/2

    • @bartoloeldelaflauta8571
      @bartoloeldelaflauta8571 3 місяці тому +1

      what about f(x)=2x+3 and g(x)=x/2

    • @aisolutionsindia7138
      @aisolutionsindia7138 3 місяці тому +2

      ​@@bartoloeldelaflauta8571 yes there was an error in my calculation.. the correct form seems to be f(x)=2x+k
      g(x)=x/2+3/2-k/2

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 3 місяці тому

    {x+x ➖ }+{4y+4y ➖}+{3+ 3➖ }={x^2+8y^2+6}=14xy^4 2^7xy^4 2^7^1xy^4 2^1^1xy^2^2 1xy^1^2 1xy^2(xy ➖ 2xy+1). f(g+g ➖)( x+x ➖)+(y+y ➖) =14xy^2 .

  • @Ricardo_S
    @Ricardo_S 3 місяці тому

    I don't think what I'm going to write is very rigorous, but oh well...
    f(g(x)+y)=x+2y+3=2(x÷2+y+3÷2)=
    2(((x+3)÷2)+y)
    g(x)=(x+3)÷2
    2(g(x)+y)
    f(x)=2x
    g(f(x)+y)=((2x+y+3)÷2)

    • @Notthatkindofdr
      @Notthatkindofdr 3 місяці тому

      Where did the g(x)=(x+3)÷2 come from? How do you know that's true?

  • @rozil2763
    @rozil2763 3 місяці тому

    Man try this , f(g(x) +y)= x+2y+3,
    f(g(x) +y)=2((x+3)/2 +y )
    g(x) =( x+3)/2, and f(x)=2x
    g(f(x)+y)= (2x+y+3)/2
    Give me some credit