Shubham V Deshmukh
Shubham V Deshmukh
  • 8
  • 30 106
Conditional Formatting in MS Excel: Highlight Matched Data in list A comparing list B
Highlight Matched Data In MS Excel: Conditional Formatting
Highlight the matched data in list A comparing list B.
Переглядів: 276

Відео

Nested VLOOKUP
Переглядів 1673 місяці тому
🚀 Master Nested VLOOKUP in Excel! 🚀 🔍 Tired of sifting through data? Nested VLOOKUP can be your ultimate time-saver! Check out my latest video where I break down the steps to efficiently use this powerful Excel function. 📊 Whether you're a beginner or looking to enhance your Excel skills, this tutorial is for you. Learn how to streamline your data lookup process and become an Excel pro! 🎥 Watch...
Nested XLOOKUP in MS Excel
Переглядів 383 місяці тому
Nested XLOOKUP in MS Excel: If 'First Name' is not found in Table 1 then search in Table 2
Finite Difference Method.
Переглядів 3604 роки тому
Finite Difference Method is one of the Numerical Method which gives most accurate results as compared to other Numerical Methods. Online Equation Solver Link: www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=sys Subdomain Method:ua-cam.com/video/qHBf7uSZmts/v-deo.html Collocation Method: ua-cam.com/video/u8dVrzxTvSA/v-deo.html Petrov Galerkin Method: ua-cam.com/video/qHBf7uSZmts/v-deo.html Finite Di...
Petrov Galerkin Method - Weighted Residue Method.
Переглядів 3,5 тис.4 роки тому
Petrov Galerkin Method is one of the Numerical Method to solve Differential Equation approximately. Subdomain Method:ua-cam.com/video/qHBf7uSZmts/v-deo.html Collocation Method: ua-cam.com/video/u8dVrzxTvSA/v-deo.html Petrov Galerkin Method: ua-cam.com/video/qHBf7uSZmts/v-deo.html Finite Difference Method: ua-cam.com/video/cB8_riC18CA/v-deo.html
Subdomain Method - Weighted Residue Method.
Переглядів 1,5 тис.4 роки тому
Subdomain Method is one of the Numerical Method to solve Differential Equation approximately. Subdomain Method:ua-cam.com/video/qHBf7uSZmts/v-deo.html Collocation Method: ua-cam.com/video/u8dVrzxTvSA/v-deo.html Petrov Galerkin Method: ua-cam.com/video/qHBf7uSZmts/v-deo.html Finite Difference Method: ua-cam.com/video/cB8_riC18CA/v-deo.html
Collocation Method - Weighted Residue Method.
Переглядів 21 тис.4 роки тому
Collocation Method is one of the Numerical Method to solve Differential equation approximately.
#ThresherMachine. | Human Powered Groundnut Thresher Machine. | Pedal Operated Thresher.
Переглядів 3,3 тис.5 років тому
●Project Title:- "Design and Development of Human Powered Groundnut Thresher Machine." ●Introduction:- This “Human Powered Groundnut Thresher Machine” separates the groundnuts from the roots of the groundnut plant. The main objective of this manually operated model is that it can be affordable by any small scale farmers in terms of cost and can be used in power shortage area. The small scale fa...

КОМЕНТАРІ

  • @OpeloyeruMaryam
    @OpeloyeruMaryam 2 місяці тому

    The way you explain is so good, thanks so much

  • @AJStorytimes
    @AJStorytimes 3 місяці тому

    Hi bro please provide all your notesof finite element analysis please

  • @soyagricola5982
    @soyagricola5982 7 місяців тому

    whta bibliografy do you used?

  • @michaelbeanie7474
    @michaelbeanie7474 10 місяців тому

    Your name is shoom dishoom ? 😅

  • @zoe-cg3mo
    @zoe-cg3mo Рік тому

    Make a video for last squer method weighted residuals. Please

  • @zindegi23201
    @zindegi23201 Рік тому

    please provide me a reference book

  • @MATHSdotPHYSICS
    @MATHSdotPHYSICS Рік тому

    Nice video to grab the method...

  • @technicalanalysisbyenginee3733
    @technicalanalysisbyenginee3733 2 роки тому

    Great teaching style

  • @subhadeep_2001
    @subhadeep_2001 2 роки тому

    Sir, can we choose any point as gauss point?

    • @shubhamvdeshmukh7625
      @shubhamvdeshmukh7625 2 роки тому

      Here, the limit is 0 to 1. We need two gauss points. So, we need to divide 0 to 1 into three equal parts to get two gauss points (shown at 9.07 minutes in the video). So, points (1/3) & (2/3) divide limit into three equal parts and hence two gauss points are obtained.

  • @GTA_nerd
    @GTA_nerd 2 роки тому

    Sir can you explain how you found that gauss points,??? 1/3 and 2/3?

    • @shubhamvdeshmukh7625
      @shubhamvdeshmukh7625 2 роки тому

      Here, the limit is 0 to 1. We need two gauss points. So, we need to divide 0 to 1 into three equal parts to get two gauss points (shown at 9.07 minutes in the video). So, points (1/3) & (2/3) divide limit into three equal parts and hence two gauss points are obtained.

    • @GTA_nerd
      @GTA_nerd 2 роки тому

      @@shubhamvdeshmukh7625 Ohk....Thank You So Much Sir🙏😊

    • @dr.mohammedabdurrahman4210
      @dr.mohammedabdurrahman4210 Місяць тому

      How did we understand that we need 2 gauss points?

  • @KrishnaSoftMatterLab
    @KrishnaSoftMatterLab 2 роки тому

    This is so good. After breaking my head on reading theory, this simple explanation made more sense. Thank you so Shubham :)

  • @joseluisipu
    @joseluisipu 2 роки тому

    Hey, can you make a video with FEM in the same way of this video ? Your explanation was nice

  • @yagyaduttsharma9985
    @yagyaduttsharma9985 2 роки тому

    Thank you!

  • @AJ-et3vf
    @AJ-et3vf 3 роки тому

    Very nice, simple, and lucid lecture about the point collocation method. I became interested in finding out how the method of collocation works because I recently learned to use the solve_bvp function of SciPy for Python and it uses collocation to solve the BVP. The collocation method isn't usually mentioned in numerical methods books. The shooting and finite difference methods are the ones usually mentioned. The collocation method is mentioned in only one of the books I have and only in passing without detailing how it works and no examples.

  • @zahraashafeea2263
    @zahraashafeea2263 3 роки тому

    How find the exact soulution

    • @AJ-et3vf
      @AJ-et3vf 3 роки тому

      The ode for this problem is a 2nd-order, linear, non-homogenous ODE with constant coefficients. For a non-homogenous ODE, you can use the method of undetermined coefficients (MUC) or method of variational parameters (MVP). Since the we have constant coefficients for this one, MUC is applicable. The forcing function here is just a constant, -1, so your steady state solution is of the form yss = k. k = -1 for this problem. The total solution is composed of the homogenous solution and the non-homogenous solution (y = -1). For the homogenous solution, you just equate the sum of y and its derivatives to zero and substitute y=e^(at) in the ODE and solve for a.

  • @siddharthupadhyay4246
    @siddharthupadhyay4246 3 роки тому

    Thank you, very short and simple explanation

  • @siddharthupadhyay4246
    @siddharthupadhyay4246 3 роки тому

    Thank you sir

  • @shiprarani2808
    @shiprarani2808 3 роки тому

    How we are choosing Gauss points here?

    • @kumarsatyam3314
      @kumarsatyam3314 3 роки тому

      same doubt i had as well

    • @AJ-et3vf
      @AJ-et3vf 3 роки тому

      You can choose any point for the collocation. What matters is that those collocation points satisfy the governing differential equation, which you do by substituting those points into the ODE.

    • @shubhamvdeshmukh7625
      @shubhamvdeshmukh7625 3 роки тому

      Here, the limit is 0 to 1. We need two gauss points. So, we need to divide 0 to 1 into three equal parts to get two gauss points (shown at 9.07 minutes in the video). So, points (1/3) & (2/3) divide limit into three equal parts and hence two gauss points are obtained.

  • @Maths312
    @Maths312 3 роки тому

    Commendable job dear sir

  • @debabratapal1155
    @debabratapal1155 3 роки тому

    Good job

  • @newagetractorworld6982
    @newagetractorworld6982 3 роки тому

    Contact number

  • @newagetractorworld6982
    @newagetractorworld6982 3 роки тому

    Good info

  • @peterowusubanahene4270
    @peterowusubanahene4270 4 роки тому

    Awesome bro. God bless you

  • @amanmanohare1655
    @amanmanohare1655 5 років тому

    Nice bro

  • @vikrantmule6365
    @vikrantmule6365 5 років тому

    Awesome bhai👍