- 42
- 33 652
Machine Learning Mindset
United States
Приєднався 14 жов 2016
This channel about AI, Machine Learning, and Deep Learning. Here, you can gain knowledge and experience.
It is associated with the Machine Learning Mindset blog (www.machinelearningmindset.com).
If you're a practitioner who wants to learn Machine Learning to apply in your projects, subscribe to my channel.
My channel publishes videos that focus on different core Machine Learning concepts as well as basic necessary materials such as programming languages (I usually use Python).
If that sounds like it could be helpful for you, please join me!
It is associated with the Machine Learning Mindset blog (www.machinelearningmindset.com).
If you're a practitioner who wants to learn Machine Learning to apply in your projects, subscribe to my channel.
My channel publishes videos that focus on different core Machine Learning concepts as well as basic necessary materials such as programming languages (I usually use Python).
If that sounds like it could be helpful for you, please join me!
TensorFlow Course - Dataset Generator
In this advanced tutorial, you will learn how to use Python generator functions to create TensorFlow datasets. This approach allows you to create a flexible input pipeline for complex situations.
Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/advanced/dataset_generator.ipynb
TensorFlow Course official page: github.com/instillai/TensorFlow-Course
Narrator: sinatorfi.com
Latest Machine Learning Tutorials: www.machinelearningmindset.com/
▂▂▂▂▂▂▂▂▂▂
Subscribe to our blog to stay tuned: www.machinelearningmindset.com/subscription/
Check our blog for more tutorials: www.machinelearningmindset.com/blog/
▂▂▂▂▂▂▂▂▂▂▂▂▂
►If you found this video useful, subscribe for New Videos: ua-cam.com/channels/jUYW0C2StijrAPhYDcZcpQ.html
If you enjoyed this video please kindly like and share!
To be informed of releasing new videos, please hit the bell beside the subscribe button!
▂▂▂▂▂▂▂▂▂▂▂▂▂
►Follow Machine Learning Mindset Elsewhere...
Facebook: machinelearningmindset
LinkedIn: www.linkedin.com/company/mlmindset
Instagram: machinelearningmindset
Twitter: machinemindset
GitHub: github.com/machinelearningmindset
▂▂▂▂▂▂▂▂▂▂▂▂▂
Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/advanced/dataset_generator.ipynb
TensorFlow Course official page: github.com/instillai/TensorFlow-Course
Narrator: sinatorfi.com
Latest Machine Learning Tutorials: www.machinelearningmindset.com/
▂▂▂▂▂▂▂▂▂▂
Subscribe to our blog to stay tuned: www.machinelearningmindset.com/subscription/
Check our blog for more tutorials: www.machinelearningmindset.com/blog/
▂▂▂▂▂▂▂▂▂▂▂▂▂
►If you found this video useful, subscribe for New Videos: ua-cam.com/channels/jUYW0C2StijrAPhYDcZcpQ.html
If you enjoyed this video please kindly like and share!
To be informed of releasing new videos, please hit the bell beside the subscribe button!
▂▂▂▂▂▂▂▂▂▂▂▂▂
►Follow Machine Learning Mindset Elsewhere...
Facebook: machinelearningmindset
LinkedIn: www.linkedin.com/company/mlmindset
Instagram: machinelearningmindset
Twitter: machinemindset
GitHub: github.com/machinelearningmindset
▂▂▂▂▂▂▂▂▂▂▂▂▂
Переглядів: 3 716
Відео
TensorFlow Course - Custom Training
Переглядів 4304 роки тому
In this tutorial, you will learn how to design a custom training pipeline with TensorFlow rather than using Keras and a high-level API. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/advanced/custom_training.ipynb TensorFlow Course official page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmi...
TensorFlow Course - Convolutional Neural Networks
Переглядів 2054 роки тому
In this tutorial, you will learn how to define and train Convolutional Neural Networks from scratch by using TensorFlow and Kers high-level API. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/neural_networks/CNNs.ipynb TensorFlow course official page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearn...
TensorFlow course - Design and train a multilayer perceptron from scratch
Переглядів 1,4 тис.4 роки тому
In this tutorial, you will learn how to training MLPs from scratch. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/neural_networks/mlp.ipynb TensorFlow Course official page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinelea...
TensorFlow Course - Define a Model
Переглядів 5374 роки тому
In this tutorial, you will learn how to define layers and models in TensorFlow. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/1-basics/models.ipynb TensorFlow course official page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.ma...
TensorFlow Course - Introduction to Graphs
Переглядів 2,3 тис.4 роки тому
In this tutorial, you will learn about TensorFlow graphs and why they are incorporated in TensorFlow. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/1-basics/graph.ipynb TensorFlow course page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay t...
TensorFlow Course - Automatic Differentiation and Gradients
Переглядів 2 тис.4 роки тому
In this tutorial, you will learn about automatic differentiation and how TensorFlow calculates gradients for model optimization. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/1-basics/automatic_differentiation.ipynb TensorFlow course page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset....
TensorFlow Course - Introduction to tensors
Переглядів 8634 роки тому
In this tutorial, you will learn what Tensors are and how to define and work with them. Source code: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/1-basics/tensors.ipynb TensorFlow Course official page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tune...
TensorFlow Course - Welcome to TensorFlow
Переглядів 1,3 тис.4 роки тому
This tutorial is a warm-up to get started with TensorFlow. Source code of this tutorial: github.com/instillai/TensorFlow-Course/blob/master/codes/ipython/0-welcome/welcome.ipynb The TensorFlow course page: github.com/instillai/TensorFlow-Course Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinele...
Logistic Regression with Scikit-Learn
Переглядів 1074 роки тому
In this tutorial, you will learn how to implement Logistic Regression in Scikit-Learn. ▂▂▂▂▂▂▂▂▂▂ Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinelearningmindset.com/subscription/ Check our blog for more tutorials: www.machinelearningmindset.com/blog/ ▂▂▂▂▂▂▂▂▂▂▂▂▂ ►If you found this video usef...
Macro vs Micro for Imbalanced Multi-class Classification | Machine Learning Tutorials
Переглядів 1,6 тис.4 роки тому
In my new tutorial, you will learn about macro and micro averages. You will learn if and how you should use them to evaluate your model in a classification setting. In particular, you will learn which one is more useful in an imbalanced data classification scenario. ▂▂▂▂▂▂▂▂▂▂ Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our ...
TensorFlow Tutorial - Create TFRecords
Переглядів 12 тис.4 роки тому
In this tutorial, you will learn how to create TFRecords as the TensorFlow favorite file format. You will learn how to read and write TFRecords. Blog post: www.machinelearningmindset.com/tfrecords-for-tensorflow/ ▂▂▂▂▂▂▂▂▂▂ Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinelearningmindset.com/sub...
NLP Tutorials - How to create a vocabulary from the document
Переглядів 1,5 тис.4 роки тому
In this tutorial, you will learn about how to create a vocabulary from your document for Natural Language Processing Applications. This step is crucial to set the basis for preprocessing the text data. ▂▂▂▂▂▂▂▂▂▂ Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinelearningmindset.com/subscription/ ...
Apply Functions on Data Frames - Pandas Tutorials
Переглядів 544 роки тому
In this tutorial, you will learn how to apply a function on a Pandas DataFrame. This is a powerful approach to perform an operation that you desire to apply to the whole DataFrame. ▂▂▂▂▂▂▂▂▂▂ Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinelearningmindset.com/subscription/ Check our blog for mo...
Pandas for Data Science - Arithmetic Operations
Переглядів 364 роки тому
In this tutorial, you will learn how to perform arithmetic operations on two different Pandas data objects. Narrator: sinatorfi.com Latest Machine Learning Tutorials: www.machinelearningmindset.com/ ▂▂▂▂▂▂▂▂▂▂ Subscribe to our blog to stay tuned: www.machinelearningmindset.com/subscription/ Check our blog for more tutorials: www.machinelearningmindset.com/blog/ ▂▂▂▂▂▂▂▂▂▂▂▂▂ ►If you found this ...
Pandas for Data Science - Data Indexing
Переглядів 114 роки тому
Pandas for Data Science - Data Indexing
Pandas Tutorials - An Introduction to Data frames
Переглядів 104 роки тому
Pandas Tutorials - An Introduction to Data frames
Pandas Data Objects - An Introduction to Pandas Series
Переглядів 644 роки тому
Pandas Data Objects - An Introduction to Pandas Series
Top Data Augmentation Techniques for Computer Vision
Переглядів 3334 роки тому
Top Data Augmentation Techniques for Computer Vision
Linear Regression - Training the Model with TensorFlow and Keras
Переглядів 1274 роки тому
Linear Regression - Training the Model with TensorFlow and Keras
Linear Regression - Data Preparation and Processing
Переглядів 7084 роки тому
Linear Regression - Data Preparation and Processing
Linear Regression - Getting to know the data
Переглядів 484 роки тому
Linear Regression - Getting to know the data
What is Linear Regression? A Gentle Introduction
Переглядів 2444 роки тому
What is Linear Regression? A Gentle Introduction
Unbiased Estimator of Population Variance - Lessons in Statistics
Переглядів 2,2 тис.4 роки тому
Unbiased Estimator of Population Variance - Lessons in Statistics
Download and Import Kaggle Datasets in Google Colaboratory
Переглядів 7594 роки тому
Download and Import Kaggle Datasets in Google Colaboratory
Thanks a lot
I was stuck on this for a few days. Great help!
Glad it helped!
It's very helpful, thank you very much~ :)
Glad it was helpful!
آموزش خوبی بود. دم شما گرم ما تازه کارا دلمون به همین ویدئو ها خوشه. دست شما درد نکنه سینا جان همیشه بدرخشی!
Great lesson
How can it be only 2 thumb up from most famous tensorflow tutorial repository!?!? Is any alive data scientist here?
How to perform this code when I have a CSV file and not image data.
Thanks for your attention. The general pipeline is similar. That only needs a change in the input pipeline to extract the relevant image information.
subtitles please
Shoutouts man! Well documented and working example!
Thank you!
Hi 🖐. I am detecting objects with tensorflow. I need to install TF record. But the record takes too long and hasn't finished in 2 hours. This is my code. Here is the problem. It's still not loading over. Please help. !python {SCRIPTS_PATH + '/generate_tfrecord.py'} -x {IMAGE_PATH + '/train'} -l {ANNOTATION_PATH + '/label_map.pbtxt'} -o {ANNOTATION_PATH + '/train.record'} !python {SCRIPTS_PATH + '/generate_tfrecord.py'} -x{IMAGE_PATH + '/test'} -l {ANNOTATION_PATH + '/label_map.pbtxt'} -o {ANNOTATION_PATH + '/test.record'}
Thanks for your message. The way that you described it, I cannot help much. Can you please elaborate more? What is the problem here? Can you explain which part is not working?
Hi can you tell me how to use TFRecords while training models. Would love to connect thanks!
Thank you for your comment. You can create a TFRecord dataset. Please refer to this tutorial for further detail: www.tensorflow.org/official_models/fine_tuning_bert
Great job man, keep making videos :)
Thank you.
Thanks for the explanation. I have two questions 1) is not clear, why in general we need to save data in TFrecords and then use them for modeling ? why not just doing it directly ? 2) I see a lot of tutorial with image analysis - how ever I am interested in tabular data and how one can leverage this functionality ? e.g. how one should do normalization/standardization of tabular data through TF pipeline ? or how to embed various approaches to take care of categorical variables. thanks again.
Thanks for your feedback. TFRecords are specially useful for big data. For ordinary experiments, you do not have to do it. As you mentioned, it can be done by directly using the data. BUT, what if the data is too large and it cannot be stored in the RAM? What if we have input/output bottleneck? This tutorial aims to show a general approach for designing a pipeline. For tabular data, it would be the best to use Pandas and just use the data generator of TensorFlow to process it. Perhaps in the future, you see easier pipelines in TF for non-image data.
Can you please make a video on how to prepare data for model after downloading from kaggle as it is a bit different then regular method because everything is in different folder like test train, etc. Thank you for you help :)
Thank you for your comment. The folders should basically be processed separately. A good way to work with Google Colab is to either treat test/train separately, our brings them at one Python script. If you desire to access the test/train folders of data, you can simply use the Python folder walking. In the future, we provide more content on that. Please check this tutorial for your information: www.machinelearningmindset.com/linear-regression-with-tensorflow/