CSCI 2824
CSCI 2824
  • 28
  • 82 776
Total Probability and Bayes Theorem
This is a video for students of CSCI 2824. It covers the Law of Total Probability as well as Bayes Theorem.
Переглядів: 264

Відео

Conditional Probability and Independence
Переглядів 1885 років тому
This is a video for students of CSCI 2824. It covers conditional probability and independence, two important concepts in probability.
Basic Probability, Probability of Complements, and Unequal Probabilities
Переглядів 2615 років тому
This is a video for students of CSCI 2824. It covers three types of probability problems - basic probability, probability of complements, and unequal probabilities.
The Binomial Theorem
Переглядів 1995 років тому
This is a video for students of CSCI 2824. It covers the binomial theorem, an easier way to go about solving otherwise long problems.
Stars and Bars Tricks and Tips
Переглядів 6 тис.5 років тому
This is a video for students of CSCI 2824. It hoes through a number of example problems to show students the best way to handle “Stars and Bars” problems.
Combinatorics - The Product Rule and Sum Rule
Переглядів 4955 років тому
This is a video for students of CSCI 2824. It begins diving into combinatorics by covering the product rule and sum rule.
The Pigeon Hole Principle (With Chocolate!)
Переглядів 2275 років тому
This is a video for students of CSCI 2824. It covers the Pigeon Hole Principle, and uses chocolate to demonstrate!
Concept Review: Closed-Form Solutions
Переглядів 1,3 тис.5 років тому
This is a video for students of CSCI 2824. It covers multiple choice problems involving closed-form solutions for recurrence relations.
Concept Review: Visualizing Big-O
Переглядів 1705 років тому
This is a video for students of CSCI 2824. It covers visualizing Big-O bounds to make the concept easier to grasp.
Concept Review: Weak vs. Strong Induction
Переглядів 17 тис.5 років тому
This is a concept review video for students of CSCI 2824. It covers when to use weak induction and when to use strong induction.
Strong Induction
Переглядів 3,8 тис.5 років тому
This is a video for students of CSCI 2824. It covers strong induction, another essential form of argument in computer science.
Weak Induction
Переглядів 6 тис.5 років тому
This is a video for students of CSCI 2824. It covers weak induction, an essential form of argument in computer science.
Finding Big-O Complexity
Переглядів 5915 років тому
This is a video for students of CSCI 2824. It covers an example of finding Big-O complexity from a given equation.
Complexity of Pseudocode
Переглядів 2 тис.5 років тому
This is a video for students of CSCI 2824. It covers how to find the complexity of an algorithm given its pseudocode.
Onto and One-to-One Functions
Переглядів 2105 років тому
This is a video for students of CSCI 2824. It covers onto and one-to-one functions.
Intro to Functions
Переглядів 1815 років тому
Intro to Functions
Recurrence Relations and Closed Form Solutions
Переглядів 17 тис.5 років тому
Recurrence Relations and Closed Form Solutions
Sets, Subsets, and Powersets
Переглядів 2955 років тому
Sets, Subsets, and Powersets
Set Operations
Переглядів 2605 років тому
Set Operations
Proofs by Contradiction
Переглядів 2705 років тому
Proofs by Contradiction
Biconditional and Contrapositive Proofs
Переглядів 2885 років тому
Biconditional and Contrapositive Proofs
Direct Proofs
Переглядів 2655 років тому
Direct Proofs
Valid vs. Sound and Logical Fallacies
Переглядів 2775 років тому
Valid vs. Sound and Logical Fallacies
Rules of Inference
Переглядів 4655 років тому
Rules of Inference
Quantifiers
Переглядів 3405 років тому
Quantifiers
Logical Equivalences
Переглядів 4996 років тому
Logical Equivalences
Tautologies, Contradictions, and Satisfiability
Переглядів 7136 років тому
Tautologies, Contradictions, and Satisfiability
Knights and Knaves Problems
Переглядів 25 тис.6 років тому
Knights and Knaves Problems

КОМЕНТАРІ

  • @JackesAlain055
    @JackesAlain055 2 місяці тому

    Thanks you so much it was clear and the essential!

  • @spartakmikayelyan
    @spartakmikayelyan 9 місяців тому

    Thank you so much!

  • @chelinaobiang
    @chelinaobiang 11 місяців тому

    It was difficult to see the paper

  • @blondisbarrios7454
    @blondisbarrios7454 Рік тому

    Why do you assume the bicconditional with P? If you try with Q, you will find another true. Which is the correct one?

  • @thefreshprince-t4m
    @thefreshprince-t4m Рік тому

    Yeah, I’m having trouble with my conclusions following logically from the premises.

    • @thefreshprince-t4m
      @thefreshprince-t4m Рік тому

      For example, fallacies are errors in reasoning, philosophers train themselves to see these errors in reasoning, people who might be corrupt commit fallacies to trick and manipulate others, therefore philosophers will likely see tricks and manipulation in corrupt people who commit fallacies.

  • @ambiguous_gee
    @ambiguous_gee Рік тому

    Thank you bro

  • @wajdy2620
    @wajdy2620 2 роки тому

    ahhhh thank youuuu. I couldnt wrap my mind around these problems and with this method you dont even need to understand what theyre saying.

  • @mwwnlight
    @mwwnlight 2 роки тому

    Thank you!

  • @iuseyoutubealot
    @iuseyoutubealot 2 роки тому

    Why do you have the and at the end why is it not an or

  • @tehlion7430
    @tehlion7430 2 роки тому

    watching before my discrete maths exam yay

  • @yazanal-aswad3365
    @yazanal-aswad3365 2 роки тому

    face reveal?

  • @rahmanoff
    @rahmanoff 2 роки тому

    Best in class! Thanks a lot man!

  • @redrexoxtron518
    @redrexoxtron518 2 роки тому

    Thanks sir this is first one which i was easily able to understand in english

  • @computermaster360
    @computermaster360 2 роки тому

    In the proof it's not sufficient to check the recurrence, you also need to check the base case (which you already did in the previous step but it also has to be a part of the proof).

  • @Elenthiriel
    @Elenthiriel 2 роки тому

    What if we wanted that x1 <= x2 <= x3 <=..... Xn ?

  • @kevcopo
    @kevcopo 2 роки тому

    This was an AMAZING explanation, thank youu

  • @daringfalcons
    @daringfalcons 2 роки тому

    Fantastic video

  • @aishwarya1572
    @aishwarya1572 3 роки тому

    Thank you so much!

  • @livinmylife1407
    @livinmylife1407 3 роки тому

    This helped so much!!!

  • @astudilloerika31
    @astudilloerika31 3 роки тому

    thank you!!!!!!

  • @shameer.minhas
    @shameer.minhas 3 роки тому

    good explanation

  • @ZaKaRiA-SsjB
    @ZaKaRiA-SsjB 3 роки тому

    Thanks!

  • @DuhaMohammad
    @DuhaMohammad 3 роки тому

    Thanks. Very clear explanation.

  • @kal5211
    @kal5211 3 роки тому

    My man.

  • @georgepantzikis7988
    @georgepantzikis7988 3 роки тому

    This is strong induction. Weak induction only claims likelihood and never of absolute certainty.

  • @kal5211
    @kal5211 3 роки тому

    My man.

  • @kal5211
    @kal5211 3 роки тому

    Helpful

  • @forever3812
    @forever3812 4 роки тому

    Can Someone explain to me why you use the biconditional and compare P to what A says

    • @RottingFarmsTV
      @RottingFarmsTV 2 роки тому

      A bi condition is true if both sides imply each other. It tells us if the statement is logically true when being said by the person

    • @zeinnaser9150
      @zeinnaser9150 2 роки тому

      @@RottingFarmsTV Do you know why we used P and not Q for the bicondition? Because if we did then there could be a possibility where Q is true and P is false

    • @RottingFarmsTV
      @RottingFarmsTV 2 роки тому

      @@zeinnaser9150 in that possibility the bicondition is false.

  • @npspti
    @npspti 4 роки тому

    Thank you man. You are better than my professor

  • @Itsgoksss
    @Itsgoksss 4 роки тому

    Thanks:)

  • @LisaSmith-ct1yd
    @LisaSmith-ct1yd 4 роки тому

    Thank you!!!!

  • @rinuaryanimusphere2809
    @rinuaryanimusphere2809 4 роки тому

    bruh

  • @dzikriqalam5010
    @dzikriqalam5010 4 роки тому

    Thank you very much. Really help my Discrete Mathematics homework.

  • @uthpakhi
    @uthpakhi 4 роки тому

    You meet a group of six natives, U, V, W, X, Y, and Z, who speak to you as follows: U says: None of us is a knight. V says: At least three of us are knights. W says: At most three of us are knights. X says: Exactly five of us are knights. Y says: Exactly two of us are knights. Z says: Exactly one of us is a knight. Which are knights and which are knaves? can this be solved using this method?

  • @uthpakhi
    @uthpakhi 4 роки тому

    Thanks :)

  • @teaspoons8876
    @teaspoons8876 4 роки тому

    Thank you! I'm not even in this class nor do I go to this university but this was very helpful!

  • @RainmanWilliams
    @RainmanWilliams 4 роки тому

    thanks my g!!!!!

  • @MirandaJackson0
    @MirandaJackson0 4 роки тому

    Awesome! Thanks a lot

  • @advaithkumar5966
    @advaithkumar5966 4 роки тому

    this is strong induction, not weak!

  • @davidzosky1960
    @davidzosky1960 4 роки тому

    This is very helpful. Another video that very well explained the stars and bars: ua-cam.com/video/qko8XWkAE_I/v-deo.html

  • @thistimeimjumping
    @thistimeimjumping 4 роки тому

    Great tutorial but in Example 2, wouldn't n = 12? (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11)

  • @francopaniagua5416
    @francopaniagua5416 4 роки тому

    Neat explanation, helped me to understand strong induction

  • @adicool154
    @adicool154 4 роки тому

    Beautiful explanation

  • @KaosEngineer
    @KaosEngineer 4 роки тому

    Yea, someone else already mentioned it but indeed, 1 is not a prime number hence why this problem typically starts at n >= 2. It was explained to me that if you took 1 to be prime, then you break the universe (at least the universe in which the fundamental theorem of arithmetic exist).

  • @qwe1023229494
    @qwe1023229494 4 роки тому

    One thing I want to correct is:1 is not prime number.

  • @faithmaria5020
    @faithmaria5020 4 роки тому

    awesome and straight to the point

  • @lanrebloom3809
    @lanrebloom3809 5 років тому

    thanks bro you saved my grade

  • @KnightPapa
    @KnightPapa 5 років тому

    This was very helpful, thanks!

  • @sweeterman8927
    @sweeterman8927 5 років тому

    thank you for putting this content out there