Pranay Lendave
Pranay Lendave
  • 1
  • 6 776
Human Activity recognition using Python and Tensorflow (MoViNets)
Welcome to our UA-cam video! In this tutorial, we dive into the exciting realm of video classification using MoViNet models. With their efficiency and lightweight nature, MoViNet models are perfect for real-time and resource-constrained applications.
Our comprehensive guide takes you through the entire process of video classification using MoViNet models. We cover everything from data preparation to model training, evaluation, and even inference on new videos.
To train and test the MoViNet model, we utilize a subset of the UCF101 dataset. This diverse dataset contains a wide range of video clips across multiple action categories, making it ideal for training and evaluating video classification models.
Github link for project: github.com/PranayLendave/video_classification
#HumanActivityRecognition #DeepLearning #MachineLearning #AI #DataScience #ComputerVision #ActivityRecognition #DeepNeuralNetworks #DeepLearningModels #HumanMotionAnalysis #PatternRecognition #DeepLearningAlgorithms #DataAnalysis #Tensorflow #ArtificialIntelligence #DataMining #ActivityClassification #DeepLearningResearch #HumanActivityDetection #DeepNeuralNetworks #AIinAction #VideoClassification #MoViNets #movinets
Переглядів: 6 789

Відео

КОМЕНТАРІ

  • @zcliu-uy1ze
    @zcliu-uy1ze 4 місяці тому

    Hi, the video is very interesting, but the voice is low.

  • @salmankhalildurrani
    @salmankhalildurrani 8 місяців тому

    hey, thank you so much. please make more videos like this.

  • @moulichand9852
    @moulichand9852 8 місяців тому

    heyy thanks

  • @techthunder4832
    @techthunder4832 10 місяців тому

    hey hi pranav, can i load this model and build an UI by using streamlit to show the predcition???

  • @viratfansforlife760
    @viratfansforlife760 11 місяців тому

    Bro how to contact you