Dr. Clark Teaches Math
Dr. Clark Teaches Math
  • 145
  • 90 632

Відео

3.3 Modeling with Systems of Differential Equations - Examples
Переглядів 97Місяць тому
Examples of various systems of differential equations and how to model them.
Financial Mathematics: 4.2: Bond Examples
Переглядів 51Місяць тому
Example Problems determining bond pricing and the type of bond.
Financial Mathematics 4.2: Bond Terminology
Переглядів 32Місяць тому
What is a Par, Premium, and Discount Bond?
Financial Mathematics: 4.2 - Bond Review
Переглядів 31Місяць тому
How do you price a bond?
8.3: Non-Homogeneous Linear Systems - Example
Переглядів 15511 місяців тому
How do you solve a non-homogeneous linear system of differential equations?
8.2: Solving Homogeneous Linear Systems of Complex Eigenvalues - Example
Переглядів 16811 місяців тому
How do you solve a homogeneous linear system of differential equations if the eigenvalues are complex?
8.2: Solving Homogeneous Linear Systems with Double Roots - Example
Переглядів 13311 місяців тому
How do you solve a homogeneous linear system of differential equations when there is not two linearly independent eigenvalues?
8.2: Solving Homogeneous Linear Systems - Example
Переглядів 12211 місяців тому
How do you use the eigenvalues and eigenvectors of a matrix to solve a homogeneous linear system of differential equations.
8.1: Solutions of Systems of Linear Differential Equations - Example
Переглядів 15211 місяців тому
How do you convert a linear differential equation to a system and verify that solutions are valid?
7.5: Solving DEs with Impulse Forcing using Laplace Transform - Example
Переглядів 151Рік тому
How do you solve a 2nd order differential equation when the forcing term is "impulse forcing" or dirac forcing?
7.3: Solving DEs with Discontinuous Forcing using Laplace - Example
Переглядів 157Рік тому
Example video of solving a 2nd order differential equation using Laplace Transform and the Translation Theorem for a problem with discontinuous non-homogeneous forcing term.
7.3: Solving 2nd Order DEs with Laplace and Translation Theorem - Example
Переглядів 124Рік тому
Explaining an example problem wherein a 2nd order initial value problem is solved using the translation theorem for Laplace Transform.
7.2: Solving Differential Equations with Laplace Transform - Example
Переглядів 179Рік тому
An example of modeling a spring mass setup using a second order initial value problem and solving it using the method of Laplace Transform.
7.1: Laplace Transform Definition - Example
Переглядів 150Рік тому
In this example we see how to use the definition of the Laplace Transform to transform a given function.
5.1: Harmonic Oscillators with Sinusoidal Forcing
Переглядів 164Рік тому
5.1: Harmonic Oscillators with Sinusoidal Forcing
5.1: Homogeneous Harmonic Oscillators
Переглядів 136Рік тому
5.1: Homogeneous Harmonic Oscillators
Section 6.1: Force of Interest
Переглядів 47Рік тому
Section 6.1: Force of Interest
5.1: Understanding Modeling Spring-Mass-Damper Second Order Differential Equations - Example
Переглядів 197Рік тому
5.1: Understanding Modeling Spring-Mass-Damper Second Order Differential Equations - Example
4.4: Understanding How to Solve Non-homogeneous Linear Differential Equations - Example
Переглядів 172Рік тому
4.4: Understanding How to Solve Non-homogeneous Linear Differential Equations - Example
4.3: Understanding How to Solve Linear Homogeneous Differential Equations - Example
Переглядів 166Рік тому
4.3: Understanding How to Solve Linear Homogeneous Differential Equations - Example
4.1 Understanding Non-homogeneous Linear Differential Equations - Example
Переглядів 211Рік тому
4.1 Understanding Non-homogeneous Linear Differential Equations - Example
3.2: Understanding Non-linear Models - Example
Переглядів 161Рік тому
3.2: Understanding Non-linear Models - Example
3.3: Understanding Modeling with Systems of Differential Equations - Example
Переглядів 163Рік тому
3.3: Understanding Modeling with Systems of Differential Equations - Example
3.1: Understanding Linear Models - Example
Переглядів 162Рік тому
3.1: Understanding Linear Models - Example
2.3: Understanding Integrating Factors - Example
Переглядів 154Рік тому
2.3: Understanding Integrating Factors - Example
2.2: Understanding Separable Differential Equations - Example
Переглядів 178Рік тому
2.2: Understanding Separable Differential Equations - Example
2.1: Understanding Slope Fields - Example
Переглядів 150Рік тому
2.1: Understanding Slope Fields - Example
1.3: Understanding Modeling of Differential Equations - Example
Переглядів 201Рік тому
1.3: Understanding Modeling of Differential Equations - Example
1.2: Understanding Initial Value Problems - Example
Переглядів 168Рік тому
1.2: Understanding Initial Value Problems - Example

КОМЕНТАРІ

  • @jonathanbreems6133
    @jonathanbreems6133 Місяць тому

    First

    • @sammyking7806
      @sammyking7806 Місяць тому

      1 like and no replies? Let me fix that

  • @sayfmanek6646
    @sayfmanek6646 6 місяців тому

    This is what i needed !!

  • @suhilsajini9115
    @suhilsajini9115 6 місяців тому

    Too fast

  • @n2-minhhieu426
    @n2-minhhieu426 7 місяців тому

    hay quá ♥

  • @johnnyrukneh599
    @johnnyrukneh599 8 місяців тому

    is it possible, for question a, to integrate dy/dt instead of differentiating y(t)? or does it strictly have to be differentiating?

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 8 місяців тому

      To check that a given function y(t) is a solution to the differential equation you want to check that it does in fact do what the DE says, in this case the left hand side says take the derivative of y(t) and the right hand side says to take y(t) and divide it by t^2. Then y(t) is a solution if the left hand side is equal to the right hand side. I suppose you could also say, is the anti-derivative of y(t)/t^2 equal to y(t), but generally that's a more difficult problem and there isn't a unique antiderivative so it's better to go the other way.

    • @johnnyrukneh599
      @johnnyrukneh599 8 місяців тому

      @@dr.clarkteachesmath thanks prof. I got it

  • @joaniejohnson6782
    @joaniejohnson6782 9 місяців тому

    😂ü

  • @samtux762
    @samtux762 11 місяців тому

    Why is it allowed to integrate LHS and RHS with respect to different variables (dy and dt respectively)? If I start with y=x*x and add "y" to LHS and "x" to RHS, the resulting graph is different from the initial graph. Why are we allowed to integrate as shown on the slide?

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 10 місяців тому

      I think the best answer is that it works and you can show in a more theory driven advanced course why it works, but in a first course, it's more about using the tool to solve DEs than proving why that tool is valid.

  • @samtux762
    @samtux762 11 місяців тому

    Thank you for this great course. I now understand what the differential equations are about. "d(x) /d(y) = y-x" literally means: the slope at these (x1,y1) point on a plot has a slope of y1-x1. I've studied differential equations for one semester. And I didn't understand much: they only gave us rules how to integrate these equations analitically.

  • @samtux762
    @samtux762 11 місяців тому

    The video on ice model is missing

  • @samtux762
    @samtux762 11 місяців тому

    It seems that the solution of 2 is m(t) = (kt/3 +C)^3. With just "m(t) = (kt+C) ^3" substitution gives - 3(k^3)*(t^2) = -(k^3)*(t^2)

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 10 місяців тому

      Yes, that's right, it should have kt/3 like you said.

  • @samtux762
    @samtux762 11 місяців тому

    Great lecture

  • @briandwi2504
    @briandwi2504 11 місяців тому

    Very helpful and clear. Thanks!

  • @IamAspirant001
    @IamAspirant001 Рік тому

    A company creates a sinking fund by setting aside a sum of 𝑅𝑠 5000 annually for 10 yrs to pay off a debenture issue of 𝑅𝑠 60,000. If the fund accumulates at 5% per annum compound interest, find the surplus after paying for debenture issue. .... please solve it

    • @dr.clarkteachesmath
      @dr.clarkteachesmath Рік тому

      This sounds like a standard sinking fund problem. The formula for the future value of a sinking fund, that is a regular sequence of deposits at a fixed interest rate is FV = P((1+i)^n - 1)/i where i is the annual interest rate and n is the number of years. In your case, 5000(1.05^10 - 1)/.05 = 62889.5. Since the debt is 60,000 at year 10, that leaves a surplus of 2889.50 at year 10.

    • @IamAspirant001
      @IamAspirant001 Рік тому

      @@dr.clarkteachesmath why it is 1.05^10-1?

    • @dr.clarkteachesmath
      @dr.clarkteachesmath Рік тому

      @@IamAspirant001 That comes from the sinking fund formula. It's a standard formula in financial mathematics. I'd suggest searching for a video that specifically derives the formula and explains where it comes from. The short answer is that it is comes form the formula for summing a series, but I can't fit the explanation in a comment.

  • @mr.nobody4575
    @mr.nobody4575 Рік тому

    Thanks for the video, but going over some actual numbers would be more helpful. If I have a customer that sells an 8% bond for 102, which they purchased at par 1 year ago, what is the total return of this postion. The answer that is given to this question is 10%. The formula for this question: ($80+$20) / 1000 = 100 / 1000 = 0.10 (10%) I have no idea where these numbers come from and your video doesn't make it any more clear. I was hoping this video was going to explain the financial mathematics behind bonds, but I literally know (now I know I don't know) less than before with seeing that formula from your video.

    • @dr.clarkteachesmath
      @dr.clarkteachesmath Рік тому

      The videos are intended to be a very brief introduction to the topic, not a complete explanation. So yes, you are correct that it's not a sufficient explanation, but I didn't intend it to be, only a preview of what is coming up in my FM class.

    • @mr.nobody4575
      @mr.nobody4575 Рік тому

      @@dr.clarkteachesmath Okay. No worries. I found the answers and understanding somewhere, eventually.

  • @EsotericWizard
    @EsotericWizard Рік тому

    great video! thank you so much, really amazing walk through.

  • @zwothethothori6058
    @zwothethothori6058 Рік тому

    Thank you

  • @BrianDLee
    @BrianDLee Рік тому

    I thought green’s theorem has the curl of F on the inside, not the divergence of F.

    • @dr.clarkteachesmath
      @dr.clarkteachesmath Рік тому

      There are two versions of Green's Theorem in 2D, one gives you the net circulation around the curve, and that one has the curl F inside the region, and then there is also a flux version which gives the net flux through the boundary to be the sum of the divergence within the curve.

  • @abeimnida
    @abeimnida Рік тому

    HI, Dr.Clark im just confused with the value that we get after computing the triple integral. In the 1st example, we get 3/2, so what does this actually means? It is a scalar right? I've read online where a positive number means positive divergence where larger arrow implies greater magnitude, but here we are required to calculate the surface? So does the value 3/2 has a value like m^2 or something? Im new to this div, curl thing as i am about to enter my Analysis 2 class.

    • @dr.clarkteachesmath
      @dr.clarkteachesmath Рік тому

      The valued 3/2 is a scaler. It's a measure of the "flux" out the surface of the vector field. So, if the surface is a net, and the vector field is the flow of water, the flux would be how much water is flowing through the net. So the units depend on the units of the vector field - it's could be an electromagnetic field and then you'd have to ask a physicist what the units mean in that case. If you're looking for a nice book that explains divergence and curl in a conceptual way I'd suggest "Div, Grad, Curl, and All That". It's a friendly and short read.

  • @configurine
    @configurine Рік тому

    thx man, i am a dummy and this is very dummy proof :3

  • @Chilldude_101
    @Chilldude_101 Рік тому

    thank you, everyone shows the part around 9:40 in such complicated ways but you showed it in a really simple way

  • @TuanNguyen-zd1xn
    @TuanNguyen-zd1xn 2 роки тому

    Thank you so much

  • @emmanuelcox3262
    @emmanuelcox3262 2 роки тому

    On that last example, you mentioned the answer as <5,0,5> but I think it was supposed to be <0,5,5>

  • @erenyalcn9393
    @erenyalcn9393 2 роки тому

    Why did you write the additional 'r' at 6:31 ?

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 2 роки тому

      in cylindrical coordinates, you need to have dV the volume differential, which is r dz dr dtheta. In rectangular coordinates, it is just dV = dx dy dz, a box, but in polar coordinates dx dy = r dr dtheta, so in cylindrical, dV = r dz dr dtheta. You'll need to look at a picture of the polar "rectangle" r dr dtheta from a textbook to see why the r is there.

    • @francisfigueroaiii5383
      @francisfigueroaiii5383 11 місяців тому

      you're fucking life saver

    • @francisfigueroaiii5383
      @francisfigueroaiii5383 11 місяців тому

      ​@@dr.clarkteachesmath i've got question so if dx,dy,dz = r, dr, dz, because dx, dy = r dr so why do you add "dθ" with the r dr dz dθ 6:42

  • @keunhchoi
    @keunhchoi 2 роки тому

    Dr. Clark. your lecture series are one of the best on youtube available, and I learn a lot from your lectures. Could you make one for PDE as it seems there are very few good ones available. I know Dr. Tisdell's one is good, but I think I like the way you present.

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 2 роки тому

      I don't have a plan to do a PDE series, but I should add more ODE content tbh.

  • @burakki6324
    @burakki6324 2 роки тому

    fascinating

  • @charlesmadden2350
    @charlesmadden2350 3 роки тому

    you suck for only doing cylinders

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 3 роки тому

      Charles, good point, the video might have been more helpful if a wider variety of shapes were shown. What were you hoping for?

  • @gunjanrathore9337
    @gunjanrathore9337 3 роки тому

    Show that surface integral(x*2 i + y*2 j + z*2 k) n cap ds = 0 S is the surface of the ellipsoid x*2/a*2 + y*2/b*2 + z*2/c*2 = 1 Please solve this and tell me how you get it's answer

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 3 роки тому

      Gunjan, interesting question. I would suggest using the divergence theorem to convert the surface integral for your vector field F into an integral of it's divergence (in this case div F = 2x + 2y + 2z). Since div F is positive and negative exactly half the time symmetrically on the given domain (the solid inside the surface) the integral will come to 0 when computed.

  • @kardelenpolat1435
    @kardelenpolat1435 3 роки тому

    I have been trying to study for my exams and those clear videos about multivariable calculus really helped me a lot! Thank you so much :)

  • @alexisdiaz5357
    @alexisdiaz5357 3 роки тому

    So good thank you!!

  • @fezekabuti9776
    @fezekabuti9776 3 роки тому

    what a nice, understandable summary

  • @andysong9839
    @andysong9839 3 роки тому

    Hi Dr. Clark, do you offer personal tutorial classes for uni students? Thanks!

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 3 роки тому

      Andy, sorry for the delayed reply. I do not, but you're welcome to use what I have available here.

  • @tatyanagrossett8002
    @tatyanagrossett8002 3 роки тому

    Great explanation👍

  • @samwalhof5139
    @samwalhof5139 3 роки тому

    That point at the beginning was golden.

  • @Furlfoot5
    @Furlfoot5 4 роки тому

    AND WHY THE HELL ARE YOU IN MY RECOMMENDATIONS LOL

  • @ThewayforwardSG
    @ThewayforwardSG 4 роки тому

    Like 2 Great science Sir God bless

  • @intheskyofglass1153
    @intheskyofglass1153 4 роки тому

    Yeeei 😄

  • @chongziyao4510
    @chongziyao4510 4 роки тому

    6:31

  • @masonridge7108
    @masonridge7108 4 роки тому

    Good to see you again Multi Students

  • @masonridge7108
    @masonridge7108 4 роки тому

    Hello Darien Multi Students

  • @cameronsteenhoek9635
    @cameronsteenhoek9635 4 роки тому

    Yesterday was tomorrow two days ago.

  • @cameronsteenhoek9635
    @cameronsteenhoek9635 4 роки тому

    Before was was was, was was is.

  • @amna2631
    @amna2631 5 років тому

    Why cant we apply L'Hospital rule?

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 5 років тому

      You should be able to use it along a particular path, but you would have to check it for all possible paths.

  • @adityajangid1978
    @adityajangid1978 6 років тому

    sir, how can i download the application you are using for plotting graphs?

    • @dr.clarkteachesmath
      @dr.clarkteachesmath 5 років тому

      I'm using CalcPlot 3d, which is available free here: www.monroecc.edu/faculty/paulseeburger/calcnsf/CalcPlot3D/ but I also use GeoGebra regularly which is free here: www.geogebra.org/ Both can run in a browser or can be downloaded.

  • @kvanc6717
    @kvanc6717 6 років тому

    Thanks sir!

  • @SeniorGeneralOmega
    @SeniorGeneralOmega 6 років тому

    Periodical summations of 0 like 0^0 setting to 0 = 0 is the first series of continuity with 0 + 0 = 0 0/0 would or could equal 1 with 0 + 0 (x,y)S Series 0 + 0 = 1 - 1 (1-1)(0-0) or 0 + 0 = 0 + 0. 0/0 therefore is a stop in continuity and then a stop and then a start 0^0 would then equal 1 with a arrow pointing towards 0 = 1*1.

  • @coolioh101XOXO
    @coolioh101XOXO 8 років тому

    I was looking for a video that wud finally clear up my understanding issues about this topic fully without having to watch like an hour long lecture video and rhis video did it!! thanks so much for yur help