- 28
- 251 842
Quantum Soar
Приєднався 6 лют 2023
Quantum Computing videos on quantum algorithms and other quantum things, enjoy!
Quantum Computing Course: 3.8 Shor's Algorithm
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing
Thanks for Watching!
Thanks for Watching!
Переглядів: 19 318
Відео
Quantum Computing Course: 3.7 Quantum Phase Estimation
Переглядів 7 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.6 Quantum Fourier Transform
Переглядів 13 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.5 Bernstein-Vazarani Algorithm
Переглядів 3,8 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.4 Deutsch-Jozsa Algorithm
Переглядів 9 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.3 Deutsch's Algorithm
Переглядів 4,9 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.2.B Quantum Functions
Переглядів 3,8 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.2.A Classical Prerequisites
Переглядів 3,3 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 3.1 Superdense Coding
Переглядів 6 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 2.6 Phase Kickback
Переглядів 5 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 2.5 Quantum Entanglement
Переглядів 4,5 тис.Рік тому
Mistake at 2:45, sqrt(3/2) should be sqrt(3/5) Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 2.4 Measuring Singular Qubits
Переглядів 4,1 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 2.3 Multi-Qubit Gates (CNOT, Toffoli, etc)
Переглядів 5 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 2.2 Quantum Circuits
Переглядів 6 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 2.1 Representing Multiple Qubits
Переглядів 6 тис.Рік тому
Problem Sets for this Course: drive.google.com/drive/folders/1A-RHTQFRY_pipVfItQBxMU-xEexRESQj?usp=sharing Thanks for Watching!
Quantum Computing Course: 1.7 The Phase Gates (S and T gates)
Переглядів 7 тис.Рік тому
Quantum Computing Course: 1.7 The Phase Gates (S and T gates)
Quantum Computing Course: 1.6 The Hadamard Gate and the +, -, i and -i States
Переглядів 14 тис.Рік тому
Quantum Computing Course: 1.6 The Hadamard Gate and the , -, i and -i States
Quantum Computing Course: 1.5 Introduction to Phase
Переглядів 9 тис.Рік тому
Quantum Computing Course: 1.5 Introduction to Phase
Quantum Computing Course: 1.4 Manipulating a Qubit with Single Qubit Gates
Переглядів 10 тис.Рік тому
Quantum Computing Course: 1.4 Manipulating a Qubit with Single Qubit Gates
Quantum Computing Course: 1.3 Representing a Qubit on the Bloch Sphere
Переглядів 18 тис.Рік тому
Quantum Computing Course: 1.3 Representing a Qubit on the Bloch Sphere
Quantum Computing Course: 1.2 Introduction to Dirac Notation
Переглядів 8 тис.Рік тому
Quantum Computing Course: 1.2 Introduction to Dirac Notation
Quantum Computing Course: 1.1 Introduction to the Qubit and Superposition
Переглядів 9 тис.Рік тому
Quantum Computing Course: 1.1 Introduction to the Qubit and Superposition
Quantum Computing Course: 0.4 Matrices as Transformations
Переглядів 4,4 тис.Рік тому
Quantum Computing Course: 0.4 Matrices as Transformations
Quantum Computing Course: 0.3 Introduction to Matrices
Переглядів 4,3 тис.Рік тому
Quantum Computing Course: 0.3 Introduction to Matrices
Quantum Computing Course: 0.2 Complex Numbers on the Number Plane
Переглядів 5 тис.Рік тому
Quantum Computing Course: 0.2 Complex Numbers on the Number Plane
Quantum Computing Course: 0.1 Introduction to Imaginary and Complex Numbers
Переглядів 12 тис.Рік тому
Quantum Computing Course: 0.1 Introduction to Imaginary and Complex Numbers
Deutsch-Jozsa Algorithm: Exponential Speedup on a Quantum Computer!
Переглядів 11 тис.Рік тому
Deutsch-Jozsa Algorithm: Exponential Speedup on a Quantum Computer!
Deutsch's Algorithm: An Introduction to Quantum Computing Oracles
Переглядів 39 тис.Рік тому
Deutsch's Algorithm: An Introduction to Quantum Computing Oracles
Best Video ever, however, how can it be that you start the calculation on Uf with (x) and you end up with (x) times (-1)^f(x)? This means that (x) equals +/- (x)
Yeah sure - load of jargon as if he is explaining it.
This brief video description of Deutsch's Algorithm is superb. Great work, keep making more such awesome videos!
You are the best. Short and precise
Manim ah?!
Thanks, extremely good video!!
@1:39 Wait, isn't (1/sqrt(2))(|000> + |011>) equal to (1/sqrt(2))|0> \otimes (|00> + |11>), thus NOT entangled?
Thank you so much for the course. Precise and easy to understand with great animations!
Thank you for helping me understand I should wait until after middle/highschool to move away from binary computing... why does binary have to leave it was so simple we had C and C++ and Rust and now soon its gonna be a harder x86 assembly I DIDNT EVEN KNOW THAT WAS POSSIBLE WHYYYYYYYYYYYYYYYYYYY!!!!!!!!!!!
typo in exponentiation example, missing 2^14 (but understandably not worth fixing...). Thanks by the way, great videos!
Thank you, great videos. By the way I dont see any problem set for 3.6 alluded to in the beginning.
best playlist for Quantum computing
Thank you Sir
You have created the best playlist to get in to quantum computing. It really helped me a lot to get started in a very short amount of time. Hoping to see more videos from you in future.
Dear sir, please what if it was not for the eigen values, for non-eigen values what happens to kickback? Will it happen in different "intensity"? or will it only happen for eigen values of target inputs please
Great video ever on QC
so far im really impressed, this helps so much, watching it before trying my uni exercises, thank you man
I thought my monitor was broken when I watched this video.
Hi, big thanks for this video. What does the QFT of some set of qubits actually mean? As in what does that set of qubits represented on screen actually represent? with a DFT you input a sequence of amplitudes, and the DFT returns a sequence where each complex element represents the amplitude of the sine and cosine waves associated with it's index right? So how does inputting the number 7 into a QFT mean anything? Sorry I'm just a little confused
Great lecture. I have a question. In the last example, if you can see A and B in the output, why do you need c XOR f(A, B)?
Well we wanted to apply an XOR operation to start with, but "XOR" destroys information, since we map two inputs (A,B) to one output (A⊕B). In quantum mechanics we want it to be reversible (unitary), so the "results" of the XOR operation is stored in a third bit called c. That way we see A and B in the output but we also get the results of the original XOR operation stored in the c bit. In short: We introduce the extra bit c to store the results of the XOR operation in a new bit, but still allows us to reverse it. You don't just want to see A and B, you also want the actual results of the XOR operation. So we need "c XOR f(A, B)" to be able to get access to the actual XOR operation we wanted to begin with. Does that make sense? Without it you have A and B but you don't have the results of the XOR operation. This makes the XOR operation reversible but you still have the results of the XOR operation.
@@Woollzable Thank you so much for your reply. My initial thought was that the definition of 'reversible' is to get x from f(x). In this case, the x is (A, B). Therefore, if there is a (A, B) in the output, we immediately get the input x, and it has already been reversible even without knowing f(x). Right now, after a second consideration, I guess you made some points. We may also want to know f(x). In this case, we can use c and c⊕f(x) to determine f(x). Then, everything is reasonable. Is my analysis right? Thank you.
@@jameshuang5905 Yes that is exactly correct :) The XOR operation/gate is fundamental in classical computing, but it's not reversible. If we want to use the XOR gate in quantum computing, we have to modify the gate to make it reversible, that's why we output the original "input" + store the results from the XOR or "f(x)" operation in a new bit. Often, this is referred to as a CNOT operation, which mimics XOR but for quantum computing. In classical computing, most operations are irreversible by default. The idea of using XOR with an extra bit in classical computations is a conceptual model for making irreversible operations reversible-which is necessary when we move to quantum computations. In fact, any non-reversible function f(x) can be made reversible by using this method.
@@Woollzable Sounds great. Thank you so much for your explaination.
Oh man, where's the ask AI when you need it 😂. I went from the first viedo to this one, but without a college education, I felt slapped 😂. Any adive on a video or way to quickly get past a lot of the "jargon" so I can really obsorb what your saying. This seems awsome and easy for machine learning and data analysis. (Not gonna lie, im gonna use sheets, bite me😂)
I'm confused about something. The state j is an m qbit state while our state psi 4 is m+n qbits. It cannot be the fourrier transform of j. I think you forgot to remove the v
Hi amazing tutorial! I want to add that it wasn't clear that the algorithm assumes the given function must be either balanced or constant. I thought it might be neither of them. I think it's important to clarify that. Thanks!
Maybe it's useful to mention tensor product?
u r goated
Your videos have been amazing for my cs A-level project. Thank you so much
На мой арифметически простой взгляд, Сфера Блоха - это *не* физический объект. Можно сказать, что это условное вспомогательное мнемоническое представление о характере взаимодействия физических объектов. Природа не оперирует подобными трансцендентными представлениями. Поэтому на их основе невозможно строить логически правильные умозаключения о практической реализации этих представлений. 08.09.2024.
На интуитивном уровне предполагаю, что Природа оперирует квантовыми процессами в первую очередь в соответствии с симметричными кристаллографическими соотношениями. 13.09.2024.
Интересно, чт0, глядя на Сферу Блоха, рассказывает продвинутый Искусственный Интеллект (AI) о технической и технологической возможности / невозможности создания полноценно работающего квантового компьютера? 26.09.2024.
Come back!!! We need you. You are the best.
This whole series has been incredible so far. It's filling in all the gaps that I didn't quite get in class. I came looking for a single video to confirm my understanding of hadamard gates and ended up with a deeper and more intuitive understanding of things I thought I already understood from this series. Thanks!
You are a GOD of elegance. No meaning is lost in your concise and effective style of presentation!
:)
THANK YOU SO MUCH
Straightforward and detailed. Bravo, and thank you!
I know you're a great teacher when I was able to predict the possible qubits states during the circuit walkthrough at the end
Hi @quantum-soar , in previous videos you said that for phase-kickback the v must be eigenstate of U, how here in this video |-> is an eigenstate of Uf so phase kickback will happen (for different f(x) such as in Bernstein Vazarani etc) ?
Wonderful explanation and very useful course. Thank you so much.
Is 3 + 8 not 11?
Yup. My bad.
116
902
064
538
048
408
033
314
067
211
65
137
054
211