Faculty
Faculty
  • 191
  • 110 804
Faculty Demo Day 28 - Emily Thomas - NHS BNSSG
"The project has been valuable in helping to demonstrate the proof of concept of developing a Severe System Pressure indicator. It has helped to give us an idea of what an approach may look like, and what may be achievable in terms of the kind of accuracy we could expect."
Переглядів: 514

Відео

Faculty Demo Day 28 - Alexei Stepanenko - Every Cure
Переглядів 2319 місяців тому
Faculty Demo Day 28 - Alexei Stepanenko - Every Cure
Faculty Demo Day 28 - Sebastian Stohrer - Department for Levelling Up, Housing and Communities
Переглядів 4149 місяців тому
Faculty Demo Day 28 - Sebastian Stohrer - Department for Levelling Up, Housing and Communities
Faculty Demo Day 28 - Theo Rashid - Faculty
Переглядів 2089 місяців тому
Faculty Demo Day 28 - Theo Rashid - Faculty
Faculty Demo Day 28 - Arman Aryaeipour - Virgin Media O2
Переглядів 1119 місяців тому
Faculty Demo Day 28 - Arman Aryaeipour - Virgin Media O2
Faculty Demo Day 27 - Ilakya Prabhakar - Faculty
Переглядів 442Рік тому
Faculty Demo Day 27 - Ilakya Prabhakar - Faculty
Hywel Dda University Health Board - Huw Thomas
Переглядів 320Рік тому
Hywel Dda University Health Board - Huw Thomas
Demo Day 25 - Louis Davidson - MySociety
Переглядів 229Рік тому
Demo Day 25 - Louis Davidson - MySociety
Demo Day 26 - Gareth Lomax - Ministry of Justice
Переглядів 256Рік тому
Demo Day 26 - Gareth Lomax - Ministry of Justice
Demo Day 26 - Sara Calzolari - InfluenceMap
Переглядів 175Рік тому
Demo Day 26 - Sara Calzolari - InfluenceMap
Demo Day 25 - Chukwudi To-Anadu - Virgin Media O2
Переглядів 267Рік тому
Demo Day 25 - Chukwudi To-Anadu - Virgin Media O2
Demo Day 24 - Yann Sweeney - Danish Meteorological Institute
Переглядів 2592 роки тому
Demo Day 24 - Yann Sweeney - Danish Meteorological Institute
Demo Day - Harry Johnston - Forestreet
Переглядів 2392 роки тому
Demo Day - Harry Johnston - Forestreet
Demo Day 24 - Nikita Ostrovsky - Axiell - Britten Pears, LSE, ROH
Переглядів 4362 роки тому
Demo Day 24 - Nikita Ostrovsky - Axiell - Britten Pears, LSE, ROH
Demo Day 24 - Lauren Wool - Home Office
Переглядів 1912 роки тому
Demo Day 24 - Lauren Wool - Home Office
Demo Day 24 - Mohamed Suliman - Faculty
Переглядів 2112 роки тому
Demo Day 24 - Mohamed Suliman - Faculty
Demo Day 24 - Julia Gallinaro - IQVIA
Переглядів 3262 роки тому
Demo Day 24 - Julia Gallinaro - IQVIA
Amy Tee - Faculty
Переглядів 3322 роки тому
Amy Tee - Faculty
Julia Sala Bayo - Otta
Переглядів 4722 роки тому
Julia Sala Bayo - Otta
Lasma Alberte - Primary Market Research Automation (IQVIA X)
Переглядів 2232 роки тому
Lasma Alberte - Primary Market Research Automation (IQVIA X)
Fabian Thiemann - IQVIA X
Переглядів 2182 роки тому
Fabian Thiemann - IQVIA X
Davide Facoetti - Faculty
Переглядів 4632 роки тому
Davide Facoetti - Faculty
Overcome today's supply chain uncertainty with tomorrow's demand forecasting
Переглядів 1882 роки тому
Overcome today's supply chain uncertainty with tomorrow's demand forecasting
Faculty by the numbers
Переглядів 2252 роки тому
Faculty by the numbers
Gleb Lukicov - Inspiring future Data Science talent
Переглядів 3462 роки тому
Gleb Lukicov - Inspiring future Data Science talent
Tunrayo Adeleke Larodo - Methods for Synthesising Realistic Data
Переглядів 3462 роки тому
Tunrayo Adeleke Larodo - Methods for Synthesising Realistic Data
Gabriel Tarrason Risa - Demand sensing for sales forecasting
Переглядів 1962 роки тому
Gabriel Tarrason Risa - Demand sensing for sales forecasting
Patrick Lunt - Elasticity modelling
Переглядів 2072 роки тому
Patrick Lunt - Elasticity modelling
Kevis Pachos - Emoji Language Detection
Переглядів 1252 роки тому
Kevis Pachos - Emoji Language Detection
Conor Smith - Net Promoter Score
Переглядів 882 роки тому
Conor Smith - Net Promoter Score

КОМЕНТАРІ

  • @bonob0123
    @bonob0123 Місяць тому

    really nicely done. thanks

  • @donnydonowitz3841
    @donnydonowitz3841 4 місяці тому

    Beautiful voice and manner of speech

  • @baaliilyes
    @baaliilyes 5 місяців тому

    This is Gold! The best video explaining hierarchical bayesian models, it addresses many of the question I had, none of the other videos out there get to this level of details. it makes me feel more confident about using these models

  • @dtr_cpg
    @dtr_cpg 5 місяців тому

    Interesting tutorial

  • @lynnhiohuang2856
    @lynnhiohuang2856 5 місяців тому

    Great present. As far as i know, both uplift tree and T-learner are part of Potential Outcome Framework Model that predict CATE/ATE to know about the casual relationship.

  • @sahajpatel7033
    @sahajpatel7033 7 місяців тому

    Excellent explanation...Thank you!

  • @JoelGrathwohl
    @JoelGrathwohl 8 місяців тому

    Very nice, thanks a lot for the talk. Very well explained and easy to follow!

  • @Bybysker
    @Bybysker 8 місяців тому

    Very good explanations . Seen a lot of videos but your presentation is very understandable . Thanks

  • @logitfau252
    @logitfau252 8 місяців тому

    great one, currently looking for overlap between same treatment used for different diseases, this one looks very helpful to approach for synthesize

  • @hemgreen9984
    @hemgreen9984 9 місяців тому

    50:20 Make sure you know when to use variational inference instead of MCMC. (usually when working with large datasets)

  • @flynnl
    @flynnl 9 місяців тому

    What a great application of data science!

  • @mohammedalmarakby1221
    @mohammedalmarakby1221 Рік тому

    hands down the best explanation for hierarchical modelling on youtube, especially with the graph visualising the effect of pooling strength on the parameter values

  • @Olimorveu
    @Olimorveu Рік тому

    One of the few well explained examples

  • @nothingspecific314
    @nothingspecific314 Рік тому

    Thanks a lot for this awesome presentation? Do you recommend particular packages and implementations on the topic?

  • @alejdiazdelao8153
    @alejdiazdelao8153 Рік тому

    Probably the clearest explanation of hierarchical models I’ve ever seen. Great video!

  • @phiphi3025
    @phiphi3025 2 роки тому

    Amazing work. Thanks

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w 2 роки тому

    Critical race theory is also quite racist. Just replace black with white in their writings, and you will see.

  • @olexiypukhov-KT
    @olexiypukhov-KT 2 роки тому

    This is incredible. Thank you.

  • @piotrlukasinski4063
    @piotrlukasinski4063 2 роки тому

    Amazing lecture!

  • @safalmukhia4699
    @safalmukhia4699 2 роки тому

    The link to the blog referenced at the end is no longer accessible through it. Can I ask where I can find this blog?

  • @zackgrant6169
    @zackgrant6169 2 роки тому

    Tunrayo taught me fractions - she really knows her stuff.

  • @maraffio72
    @maraffio72 2 роки тому

    Great video, thanks !

  • @hhhtocode651
    @hhhtocode651 2 роки тому

    Under Partial Pooling, why does sigma_a represent the degree of pooling?

  • @kaushikgupta1410
    @kaushikgupta1410 2 роки тому

    Perhaps the best explanation. Thanks a hell lot

  • @hongdoan3377
    @hongdoan3377 2 роки тому

    Wow, this has helped explained what hot deck is. Thank you!

  • @andrewramos1542
    @andrewramos1542 2 роки тому

    ❣️ 𝐩яⓞ𝓂𝓞Ş𝐦

  • @danielheinisch7146
    @danielheinisch7146 2 роки тому

    Thanks for the informative video. In the end model in which uncertainty for different counties is very similar, isn´t the model understating this uncertainty for the cases with just 1 or 2 datapoints? Could you elaborate? Thanks!

  • @noejnava8409
    @noejnava8409 2 роки тому

    Omar, it is not clear to me why sigma controls the amount of pooling. Could you point me into some sources to learn more about this? I enjoyed your presentation. Thanks.

    • @williamchurcher9645
      @williamchurcher9645 2 роки тому

      Hi Noé, maybe I can have a go at explaining. When doing the hierarchical modelling, we suppose that the parameters for each group themselves come from a distribution. If we assume that this distribution has zero variance, we are saying that all of the group-level parameters must be the same - they must be equal to the mean. This is because there is literally zero variance. This is the same as pooling all the data (the first example). On the other hand, if we assume the variance is very large, then each group parameter has the freedom to choose any value it wants, without penalisation from the group model-parameter distribution. This is the same as having no pooling - each group has its own parameter. We can choose sigma between these two extremes to specify how closely linked the group parameter should be. Thank you and I hope that helped!

    • @khanhtruong3254
      @khanhtruong3254 2 роки тому

      Hi @@williamchurcher9645. Correct me if I'm wrong: given the prior distribution of alpha_i is assumed as Normal(mu_alpha, sigma_alpha), if sigma_alpha = 0, all the alpha_i may not be (and can not be) equal because the mu_alpha is not a fixed number but follows a distribution Normal(0, 5). Put that in a formula to be clearer: alpha_i ~ Normal(mu_alpha, sigma_alpha) <=> alpha_i ~ Normal(mu_alpha, 0) <=> alpha_i ~ Normal(Normal(0, 5), 0) <=> alpha_i ~ Normal(0, 5) => alpha_i is not a constant but a distribution Following that understanding, the answer for why the sigma_alpha represents the degree of pooling is still vague.

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w 2 роки тому

    this is really well explained.

  • @juluribk
    @juluribk 3 роки тому

    Thanks for clear explanation. Very helpful.

  • @gavinaustin4474
    @gavinaustin4474 3 роки тому

    Thanks Omar. Clear and helpful.

  • @silvanagaviano7079
    @silvanagaviano7079 3 роки тому

    Bravissima.lezione eccellente

  • @jimbocho660
    @jimbocho660 3 роки тому

    This is a great presentation. Learned a lot from it. Thanks for making it public.

  • @goshirago
    @goshirago 3 роки тому

    Thank you for this well-paced video with its explanations. I feel much more confident in my understanding of Bayesian hierarchical modelling.

  • @thirtysixnanoseconds1086
    @thirtysixnanoseconds1086 3 роки тому

    this company is corrupt and evil folks, expect another COMPAS scandal with their home office partnership, caveat emptor

  • @seille3774
    @seille3774 3 роки тому

    This was great. Thank you Shailee

  • @rosierui8119
    @rosierui8119 3 роки тому

    Had a hard time getting pystan to work on Windows. Anyy recommendation?

  • @tien-lungsun3771
    @tien-lungsun3771 4 роки тому

    Very nice talk, Thanks

  • @npisharoty
    @npisharoty 4 роки тому

    Good. There were reports of errors in facial recognition systems in use by Law enforcement agencies in the USA.

  • @vitopalladino
    @vitopalladino 4 роки тому

    Great presentation and super interesting content!

  • @AWhelan
    @AWhelan 5 років тому

    This is brilliant use of predictive AI for customer segmentation, and perfectly presented. Well done sir!

  • @not_a_human_being
    @not_a_human_being 6 років тому

    great idea!

  • @robertc2121
    @robertc2121 6 років тому

    Wow, thats really brilliant. And a fantastically lucid presentation!!

  • @simon5771
    @simon5771 6 років тому

    That's a great project! Thank you for sharing.

  • @fangfangniu2337
    @fangfangniu2337 6 років тому

    very interesting!

  • @Cineenvenordquist
    @Cineenvenordquist 7 років тому

    What does the error audit stream look like, and can it not also perhaps suggest much more productive use than identifying and blocking (definitely not the film school definition of blocking, I take it.) Also, feel free to presume I'd like a TL:DR text description rather than to cite who's explaining, if that's not anathemical to fine 600.000,00 euro bloom filter cobblin'.