Non-Euclidean Dreamer
Non-Euclidean Dreamer
  • 865
  • 423 228
Evolving Cellular Agents
Agents have rule cards defining, given the state of the cell that they' re on, how to change said state, whether to die/survive/multiple, and in which direction and with which cards to move on in the latter cases.
Every now and then a single agent mutates changing one direction/offspring rule in a card or adding/removing one card.
Much love to my Patreons!
Patreon: www.patreon.com/c/noneuclideandreamer
Music: "Secret Map" by Holizna
licensed under a CC0 License. (Link: freemusicarchive.org/music/holiznacc0/retro-gamer-soundtrack)
This Video is licensed under a Attribution-NonCommercial-ShareAlike License. (creativecommons.org/licenses/by-nc-sa/4.0/)
Переглядів: 40

Відео

Multiple Agents Competing
Переглядів 11821 годину тому
20 distinct Agents are pre-selected by insuring they don't die off right away and don't (initially) grow too agressively. Then they are put on the battlegroung to compete. When things get boring, we start anew. Thank to my Patrons for the ongoing Support! Patreon: www.patreon.com/c/noneuclideandreamer Music: "Drizzly Avenue" by Slateley Street licensed under a Attribution License. (Link: freemu...
Competing Agents on Cellular Playfield
Переглядів 6214 днів тому
Competing Agents on Cellular Playfield
The Dark Side Of The Dragon Curve
Переглядів 14628 днів тому
The Dark Side Of The Dragon Curve
Shifting Colors in the Meta-Hat Tiling
Переглядів 130Місяць тому
Shifting Colors in the Meta-Hat Tiling
Menger Sponge
Переглядів 283Місяць тому
Menger Sponge
Shifting Colors in Selfsimilar Trapez Tiling
Переглядів 270Місяць тому
Shifting Colors in Selfsimilar Trapez Tiling
Conway's Truchet Tiling of Life
Переглядів 105Місяць тому
Conway's Truchet Tiling of Life
Morphing Triangular Truchet Tiling
Переглядів 2162 місяці тому
Morphing Triangular Truchet Tiling
Morphing Hexagonal Truchet Tiling
Переглядів 1942 місяці тому
Morphing Hexagonal Truchet Tiling
Morphing Truchet Tiling
Переглядів 1322 місяці тому
Morphing Truchet Tiling
Shapeshifting Shadows
Переглядів 2812 місяці тому
Shapeshifting Shadows
Three Lights and a Ringed Planet
Переглядів 1903 місяці тому
Three Lights and a Ringed Planet
Rainbow Moon
Переглядів 2613 місяці тому
Rainbow Moon
A Sphere and Three Moving Lights
Переглядів 2,3 тис.3 місяці тому
A Sphere and Three Moving Lights
Polynomial Newton Fractal
Переглядів 1,2 тис.3 місяці тому
Polynomial Newton Fractal
Rational-Exponential Newton Fractal
Переглядів 6734 місяці тому
Rational-Exponential Newton Fractal
Trying to Find Nonexistent Zeroes - Exponential Newton Fractal
Переглядів 7234 місяці тому
Trying to Find Nonexistent Zeroes - Exponential Newton Fractal
Sinusoidal-Exponential Newton Fractal
Переглядів 9664 місяці тому
Sinusoidal-Exponential Newton Fractal
Mirror Cabinet - Catch Me If You Can
Переглядів 1344 місяці тому
Mirror Cabinet - Catch Me If You Can
Mirror Cabinet Game Refactored to libGDX
Переглядів 1085 місяців тому
Mirror Cabinet Game Refactored to libGDX
Mirror Cabinet Game - Moving Opponent and Win Screen
Переглядів 1265 місяців тому
Mirror Cabinet Game - Moving Opponent and Win Screen
Mirror Cabinet - Testing My First Game
Переглядів 1115 місяців тому
Mirror Cabinet - Testing My First Game
These Langton's Ants in 1D are noisy!
Переглядів 2135 місяців тому
These Langton's Ants in 1D are noisy!
The Sound of a Mandelbrot Variation
Переглядів 6126 місяців тому
The Sound of a Mandelbrot Variation
The Sound of Mandelbrot
Переглядів 2,2 тис.6 місяців тому
The Sound of Mandelbrot
Paracompact Hyperbolic Honeycomb Sonified
Переглядів 1776 місяців тому
Paracompact Hyperbolic Honeycomb Sonified
Apollonian Music with varying Iteration Depth
Переглядів 1366 місяців тому
Apollonian Music with varying Iteration Depth
Diatonic Sphere Packing
Переглядів 976 місяців тому
Diatonic Sphere Packing
Spherical Noise
Переглядів 1036 місяців тому
Spherical Noise

КОМЕНТАРІ

  • @Vineriaaaaa2025
    @Vineriaaaaa2025 15 годин тому

    2 --> -10 power multibrot

  • @GamingDimiGD
    @GamingDimiGD День тому

    Noooo! my fractal!! Its dissolving!!!

  • @bottlekruiser
    @bottlekruiser 2 дні тому

    Does it do anything interesting if you let it run overnight?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 2 дні тому

      In most cases the number of agents increases so much that it slows too much to bear.

  • @SolargdMakerSolargd
    @SolargdMakerSolargd 3 дні тому

    this is not cool i dont like this

  • @maynardtrendle820
    @maynardtrendle820 4 дні тому

    Nice.

  • @williamsweeney2760
    @williamsweeney2760 7 днів тому

    The game of life

  • @pingnick
    @pingnick 9 днів тому

    🎬💯

  • @pingnick
    @pingnick 13 днів тому

    🎬🤯

  • @helena_2827
    @helena_2827 17 днів тому

    WOW FRAU KUTTNIG

  • @TalalThaju-gn7zj
    @TalalThaju-gn7zj 22 дні тому

    Mandelbort julia

  • @cheesepop7175
    @cheesepop7175 27 днів тому

    Is there a way to mathematically "interpolate" 2 fractals together, like an animation of the mandelbrot set slowly turning into the burning ship?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 27 днів тому

      I did just that in my Mandelbrot Wellerman: ua-cam.com/users/shorts2tcyyFWT5GY

  • @VolumetricTerrain-hz7ci
    @VolumetricTerrain-hz7ci 28 днів тому

    You can have a point here! A rhombus-shaped cube can probably be a four-dimensional cube viewed from a three-dimensional perspective. Let me explain. If we imagine a rhombus shaped hole in the ground, in which we try to get a cube through, we all know it won't work, unless we make the cube rhombus. But a four-dimensional cube can be rotated, to another perspective, so that it (from our perspective) becomes rhombus shaped and thus gets through the rhombus shaped hole which (from the cube's perspective) is square shaped. We can actually form a hyper cube, by using a cube and two rhombic cubes! Awesome video by the way!

  • @londongaz2
    @londongaz2 Місяць тому

    Now that is really cool! 😮

  • @francescov.m.k
    @francescov.m.k Місяць тому

    wow got one of your shorts while scrolling! Keep it up

  • @goncalofreitas2094
    @goncalofreitas2094 Місяць тому

    Beautifully chaotic

  • @bart0nl
    @bart0nl Місяць тому

    Woah

    • @bart0nl
      @bart0nl Місяць тому

      It looks a bit buggy on the inside in some places 🤐

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      Yeah something is uncanny... Not sure 'though

  • @pingnick
    @pingnick Місяць тому

    ⃤ ♾️

  • @-NGC-6302-
    @-NGC-6302- Місяць тому

    Interesting that it's an oblique view instead of a typical perspective cam

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      I used orthogonal projection to start with. Perspective is in the making. 😉

  • @bart0nl
    @bart0nl Місяць тому

    I'm also quite interested in your algorithm. Is it recursive?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      It is. I start with 6 squares and recursively replace them with 12 smaller squares. (So I just refactored my 2d-tesselation code a little). Is this how you did it as well?

  • @bart0nl
    @bart0nl Місяць тому

    Love it! Next with lighting and foreshortening/perspective? 😋

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      Perspective might be doable without too much effort... With Ligthing I'll wait for now, maybe increase the depth fog to a recognizable level...

  • @HopDavid
    @HopDavid Місяць тому

    Just noticed -- your banner is an ambigram! NOW NO SWIMS ON MON>

  • @chongkim-fh4zp
    @chongkim-fh4zp Місяць тому

    I studied mandelbrot set in msc maths. Mandelbrot set is nothing but endless reiteration. Nothing spiritual, supernatural or remarkable.

  • @Md.Mars69
    @Md.Mars69 Місяць тому

    Formula: Initialization Code: bailout = Any Value Iteration Code: z = z2 + c

  • @Md.Mars69
    @Md.Mars69 Місяць тому

    Seed Changing With Rotation

  • @Md.Mars69
    @Md.Mars69 Місяць тому

    Looks Like A Bailout = Any Value Mandelbrot

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      Yeah I play with the bailout condition.

    • @Md.Mars69
      @Md.Mars69 Місяць тому

      @@NonEuclideanDreamer Formula?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      @Md.Mars69 bailout if |x|^t+|y|^t>2^t with t changing with time. t=2 is the normal bailout.

    • @Md.Mars69
      @Md.Mars69 Місяць тому

      @@NonEuclideanDreamer oh ok

    • @Md.Mars69
      @Md.Mars69 Місяць тому

      ​​@@NonEuclideanDreamer so it's basically a bailout mandelbrot?

  • @Md.Mars69
    @Md.Mars69 Місяць тому

    Music? Cool Morph btw

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      Thanks! You can find the Music Attribution in the Description and on the Endscreen!

    • @Md.Mars69
      @Md.Mars69 Місяць тому

      ​@@NonEuclideanDreamer Uh That Doesn't Help

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      @Md.Mars69 okay, I don't follow. The music is from Eaters, link in description. Or do I misunderstand your query?

    • @Md.Mars69
      @Md.Mars69 Місяць тому

      @@NonEuclideanDreamer Are You Sure That Is The Right Music?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer Місяць тому

      ​@@Md.Mars69hmm, can't find the Track now. It's been 3 years. But it does sound like the right band.

  • @jiqci
    @jiqci Місяць тому

    curséd

  • @tamfang
    @tamfang Місяць тому

    Someone could turn this idea into a maze game.

  • @truongquangduylop33yyuh34
    @truongquangduylop33yyuh34 Місяць тому

    0:31 Laura, why in the world does this look like an absolute julia set!?

  • @snacku7
    @snacku7 2 місяці тому

    So you can have apeirohedra with apeirogons on each face?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 2 місяці тому

      Hmm I think they're called apeirohedra when they are paracompact, meaning they're Euclidean 2d-Tilings inbedded in Hyperbolic space. If you have infinigons in there it would be abhyperbolic tiling. But you could have infinigons, yes

  • @tamfang
    @tamfang 2 місяці тому

    All possible? What constraints make that finite?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 2 місяці тому

      There are six cut lines that don't intersect (apart from the interpolation middles). The ends of these lines lie either on the triangle's vertices or on there edge middles and quarters. This insures the lines match up.

  • @Buddyai_better
    @Buddyai_better 2 місяці тому

    It’s spinoff

  • @annesmith9642
    @annesmith9642 2 місяці тому

    weird but cool

  • @bart0nl
    @bart0nl 2 місяці тому

    Its quite frustrating that its hard to catch a change as it happens to see what's going on 😅

  • @pingnick
    @pingnick 2 місяці тому

    🎨🎬♾️🤖🤩

  • @musescore1983
    @musescore1983 2 місяці тому

    very relaxing kind of feeling

  • @stickman_lore_official6928
    @stickman_lore_official6928 2 місяці тому

    0:29 danceing

  • @musescore1983
    @musescore1983 2 місяці тому

    Conways game of Life?

  • @silly_foxi
    @silly_foxi 2 місяці тому

    OMG THAT BAND WAS LITERALLY MY CHILDHOOD!??

  • @pingnick
    @pingnick 2 місяці тому

    ♾️🎬🤩

  • @musescore1983
    @musescore1983 2 місяці тому

    in case you haven't heard it: i recommend the book optart which has a similar topic.

    • @musescore1983
      @musescore1983 2 місяці тому

      Opt Art: From Mathematical Optimization to Visual Design, from Robert Bosch

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 2 місяці тому

      Oh yes I know Robert Bosch from Instagram

  • @newfairy2023
    @newfairy2023 2 місяці тому

    😊❤

  • @maynardtrendle820
    @maynardtrendle820 2 місяці тому

    Straight Groggin'.🐢

  • @bart0nl
    @bart0nl 2 місяці тому

  • @maynardtrendle820
    @maynardtrendle820 2 місяці тому

    Nice.🍩

  • @bart0nl
    @bart0nl 3 місяці тому

    Can you maybe add a far-field background, something subtle, like a few stars? Then you can still see silhouettes when the object is dark and it gives context to what's moving

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 3 місяці тому

      Dang that would have been a good and easy idea. But the last clips of this theme are already done, September will be something completely different.

  • @magenta6
    @magenta6 3 місяці тому

    Nice music choice. What software are you using to do the render?

  • @bart0nl
    @bart0nl 3 місяці тому

    Maybe texturing next? ^^

  • @bart0nl
    @bart0nl 3 місяці тому

    Real nice! What about the artefacts on the dark side? Do we accidentally see through to the other side?

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 3 місяці тому

      Yes, we somehow see through. 😆 I think I somehow don't draw the whole sphere.

  • @bart0nl
    @bart0nl 3 місяці тому

    Yess 🎉 what does your light source look like? Probably parallel rays? Having shadows with gradients would be a cool next step but that is much harder I think. Then you need a positive etendue source

    • @NonEuclideanDreamer
      @NonEuclideanDreamer 3 місяці тому

      Yes parallel rays. You mean like partial shadows? So it wouldn't even be a point source but a sphere... 🤔 Interesting! For now I'll play with what I have with different shapes. 😁