Nick Stugard
Nick Stugard
  • 181
  • 62 916

Відео

How to choose the Right Machine Learning Algorithm
Переглядів 2242 місяці тому
In the video we will discuss several different machine learning algorithms and models as well as how to choose the best one for your project
Correlation between Two Variables Explained
Переглядів 1192 місяці тому
In this video we look at how we determine if two variables are related to each other. Link to SpuriousCorrelations: www.tylervigen.com/spurious-correlations
Creating a Linear Regression Model in Python
Переглядів 6112 місяці тому
In this video we will be using the Boston Housing Data Set to create a linear regression model by first exploring the data and determining the best two predictor variables in the data set. You can find the dataset here: github.com/NStugard/Intro-to-Machine-Learning/blob/main/BostonHousing.csv And the description of variables here: github.com/NStugard/Intro-to-Machine-Learning/blob/main/BostonHo...
Making Language Mathematical: Why ChatGPT Works
Переглядів 1163 місяці тому
In this video we discuss how we can define words as mathematical structures and what that looks like. It's important to remember that applications like ChatGPT are just neural networks trained to predict the next most likely word. For more details, please review my video on Neural Networks: ua-cam.com/video/8HHHIPwamIU/v-deo.htmlsi=hfJtpH_n3C7MhB53 And on Gradient Descent: ua-cam.com/video/Ipun...
What is Statistics? - Sampling and Bias
Переглядів 1046 місяців тому
In this video we discuss how in statistics we want to describe a population, but we only have a sample. We talk about how this can go wrong and ways to prevent it going wrong, although we can never be perfectly confident.
What is Statistics? - Variables and Data Collection
Переглядів 2027 місяців тому
What is Statistics? - Variables and Data Collection
Welcome to Online Stats at CT State
Переглядів 2278 місяців тому
Welcome to Online Stats at CT State
DS Lab 9 Jobs In Data with Sampling Distributions
Переглядів 6810 місяців тому
DS Lab 9 Jobs In Data with Sampling Distributions
9.2 DS - Simulations and Randomness in R
Переглядів 5411 місяців тому
9.2 DS - Simulations and Randomness in R
9.1 DS - Sampling
Переглядів 3611 місяців тому
9.1 DS - Sampling
Limit Examples
Переглядів 12611 місяців тому
This video reviews a five different limit examples
Limit Laws and Theorems
Переглядів 19711 місяців тому
In this video, we learn the basic limit laws and rules as well as investigate the Squeeze Theorem
Infinite Limits
Переглядів 62Рік тому
What happens at vertical asymptotes?
Investigating Limits with Technology
Переглядів 78Рік тому
How can we use a TI-83/84 calculator to evaluate functions to help us determine limits
Divergence and Curl
Переглядів 106Рік тому
Divergence and Curl
Statistics - Chapter 10: Hypothesis Testing Examples
Переглядів 357Рік тому
Statistics - Chapter 10: Hypothesis Testing Examples
Statistics - Chapter 10: Hypothesis Testing Concepts
Переглядів 438Рік тому
Statistics - Chapter 10: Hypothesis Testing Concepts
Describing Regions in 2D
Переглядів 41Рік тому
Describing Regions in 2D
More Matrix Multiplication - Identities and Inverses
Переглядів 46Рік тому
More Matrix Multiplication - Identities and Inverses
Statistics: Chapter 8 - Sampling Distributions
Переглядів 1,4 тис.Рік тому
Statistics: Chapter 8 - Sampling Distributions
DS - Merging Dataframes in R
Переглядів 48Рік тому
DS - Merging Dataframes in R
Integrating Rational Expressions
Переглядів 61Рік тому
Integrating Rational Expressions
ML 14 - Convolutional Neural Networks Explained
Переглядів 1452 роки тому
ML 14 - Convolutional Neural Networks Explained
Creating a Convolutional Neural Network with Tensorflow
Переглядів 4042 роки тому
Creating a Convolutional Neural Network with Tensorflow
SVMs in Python
Переглядів 7632 роки тому
SVMs in Python
ML 12.1 - Support Vector Machines
Переглядів 1082 роки тому
ML 12.1 - Support Vector Machines
ML 11.2 - Image Convolution in Python
Переглядів 7372 роки тому
ML 11.2 - Image Convolution in Python
ML 11.1 - Kernels in Image Convolution
Переглядів 1022 роки тому
ML 11.1 - Kernels in Image Convolution
Polynomial Regression in Python
Переглядів 5342 роки тому
Polynomial Regression in Python

КОМЕНТАРІ

  • @瓦大為
    @瓦大為 3 дні тому

    Thanks for the video for someone like me struggle in beginning with NLP !!!

  • @shreyaskatiyar614
    @shreyaskatiyar614 Місяць тому

    Sir why u have stopped to make videos ? U were too good if u can please continue sir.

  • @n3llyn3lson
    @n3llyn3lson Місяць тому

    00:00 📘 Introduction: Professor Stugard explains the goal is to understand convolutional neural networks, focusing on image recognition. 00:13 🖼 Image Classification: The process involves inputting an image, using the CNN's hidden layers, and outputting a class guess. 00:56 🔄 Convolution: Uses filters to create feature maps and activates them with the ReLU function for image classification tasks. 01:37 🌊 Pooling: Generalizes feature maps to detect features in multiple areas, creating pooled feature maps. 02:19 🔁 Iterative Process: Multiple convolution and pooling cycles lead to a fully connected neural network for outputting image class guesses. 03:02 👁 Biological Inspiration: CNNs mimic human vision by finding features in images rather than analyzing every pixel. 04:11 🧠 Feature Extraction: CNN layers break down images into areas for convolution and pooling, simplifying feature representation. 05:09 📊 Data Efficiency: Convolution reduces data size, making it easier and faster to process, crucial for high-resolution images. 06:42 ➗ Convolution Mechanics: A kernel applied to an image matrix reduces its dimensions, efficiently preserving feature information. 08:21 🔍 Feature Detectors: Different kernels and feature detectors extract various features like edges or enhancements. 10:13 ⚙ ReLU Activation: Facilitates non-linear classification by mapping negative values to zero, enhancing training. 12:04 🌀 Max Pooling: Reduces data size by selecting maximum values in non-overlapping regions, aiding in feature generalization. 13:27 ✔ Importance of Generalization: Pooling allows CNNs to recognize features despite transformations like rotation or scaling. 14:22 📉 Size Reduction: Max pooling can significantly decrease data size, even from 100 to 9 values, without losing general feature recognition. 16:51 ➖ Flattening: Pooled feature maps are flattened into vectors before being input into standard neural networks for learning. 18:52 🚗 Applications: CNNs are used in diverse applications like self-driving cars, facial recognition, and botanical identification. 19:47 🔄 Training with Epochs: Iterative process involving multiple epochs enhances model accuracy through repeated weight adjustments. 21:25 🏆 Accuracy: High accuracy is vital for critical tasks; CNNs require extensive training to achieve such precision

  • @IsmailAydemir0
    @IsmailAydemir0 Місяць тому

    Hello! thank you for the video, it helped me a lot to understand how Naive Bayes is works!

  • @otis123-l3k
    @otis123-l3k 2 місяці тому

    thank you Mr Stugard, the video is really helpful for my assignment on ethical issues

  • @scrophie
    @scrophie 2 місяці тому

    Thanks. You really helped me)

  • @Abubakar91718
    @Abubakar91718 2 місяці тому

    yours videos are awesome. please do SEO of your channel and video. That would help to attract audience

    • @nickstugard9062
      @nickstugard9062 2 місяці тому

      Thanks! I don't really know how to do SEO...

  • @sammyay-man2754
    @sammyay-man2754 2 місяці тому

    Looking forward for logistic regression video

  • @gorgesoros4137
    @gorgesoros4137 2 місяці тому

    I still couldn't understand why we can use volume enclosed by the surface to represent surface integral for scalar field

    • @nickstugard9062
      @nickstugard9062 2 місяці тому

      Which part are you confused about? Can you tell me the time-stamp?

  • @jamesiswanto
    @jamesiswanto 2 місяці тому

    Great stuff, Professor!

  • @magorasmask101
    @magorasmask101 3 місяці тому

    Great video! While playing around with the messages I found the model decided "we have been trying to reach you about your cars extended warranty" is ham haha. Other messages were no issue though.

  • @monirhasananik8720
    @monirhasananik8720 3 місяці тому

    where is the code file?

  • @lukegriggs7294
    @lukegriggs7294 3 місяці тому

    This was such a well explained video, thank you for this you are an amazing teacher!

  • @suruti94
    @suruti94 3 місяці тому

    Basics well explajned

  • @practicemail3227
    @practicemail3227 3 місяці тому

    Great technical delivery from your side, you easily made difficult topics easy and also connected dots wonderfully. Thank you a lot

  • @wahajrashid270
    @wahajrashid270 4 місяці тому

    I really hope someone will HELP me in my case so I built a similar spam detector for my college project but my professor is saying that it is a data science project that is why I want to give it a touch of cybersecurity so what should I add in this project to make it more specific to cyber security ?

  • @Rafs_kun
    @Rafs_kun 5 місяців тому

    Awesome Video Learned a lot

  • @rahilnecefov2018
    @rahilnecefov2018 7 місяців тому

    that was just awesome, love you from Azerbaijan Baku <3

  • @kanuemma9387
    @kanuemma9387 7 місяців тому

    Legend

  • @FORCP-bq5fo
    @FORCP-bq5fo 8 місяців тому

    Such a simple and greatly explained video. Thanks man

  • @Diniyaaaaaa
    @Diniyaaaaaa 9 місяців тому

    Can u please provide the code 🙂🙂🙂🙂

  • @dm-hn2wt
    @dm-hn2wt 9 місяців тому

    Hoe to deploy this plsss

  • @karthickm7906
    @karthickm7906 9 місяців тому

    Can you provide github project link containing full source code

  • @wolfemaxwell
    @wolfemaxwell 10 місяців тому

    Very interesting! Good recommendations.

  • @Kalyan1143
    @Kalyan1143 10 місяців тому

    Will you provide github project link For full souce code

  • @mrunalwaghmare
    @mrunalwaghmare 10 місяців тому

    hey there nice explanation Thanks a lot ! nicely explained and easy to understand wish we had professors like you in our college <3

  • @james17g
    @james17g 10 місяців тому

    very awesome video and demonstration! Insane to me how this works. one of those things as CS student that gets me excited!

  • @TheMatyw
    @TheMatyw 11 місяців тому

    jesus christ, talking about niche videos, tysm for this video!!!

  • @juancarlossanchezveana1812
    @juancarlossanchezveana1812 11 місяців тому

    Excellent

  • @t.danielyan
    @t.danielyan Рік тому

    This is naive video, i understood whole concept in just 30 minutes. Thank you.

  • @purvisingh235
    @purvisingh235 Рік тому

    is this realated with cloud coumputing or general mails??/

    • @nickstugard9062
      @nickstugard9062 Рік тому

      This video details the algorithm we can use for classifying any text/string and is very general. But it is only a binomial classification with the only options being 'spam' or 'not spam.' This can be implemented inside of another program that inputs text/strings into this model we've built. Which means it could be implemented in a cloud computer setting or just for general emails.

  • @MAZUMDERMOHITHASNAIN
    @MAZUMDERMOHITHASNAIN Рік тому

    Thank you man!

  • @anshugupta2340
    @anshugupta2340 Рік тому

    Awesome !!

  • @bart5557
    @bart5557 Рік тому

    It's not a bad project like this. To see the data loading and preparations step lined out is very nice. But I came here to learn about Naive Bayes and how those calculations work, and all I got was MultinomialNB().

  • @andreeafilip9221
    @andreeafilip9221 Рік тому

    Hi, thanks a lot for the video. It is very informative and very well explained. I have a curiosity, where did you get the email database from? Thank you in advance.

  • @quang5033
    @quang5033 Рік тому

    thank you, i can learn a lot from you

  • @Ewakaa
    @Ewakaa Рік тому

    So I have gone through your entire videos And trust me as an engineering student you have awesome videos. But if you can focus your teaching with project based then you will have a lot of views Example the videos your have on linear regression, support vector machine and the rest But this is amazing Thanks so much

    • @nickstugard9062
      @nickstugard9062 Рік тому

      Thank you so much for the kind words and feedback. I'll have to make a new project video soon. Do you have any requests about a type of project I should do a video about in the future?

  • @uploadideaswithitamar
    @uploadideaswithitamar Рік тому

    Hi there. Good video. Please, what screen record did you use ?

  • @stupenrio2498
    @stupenrio2498 Рік тому

    Thank you for making this video 😊

  • @kingrodeski343
    @kingrodeski343 Рік тому

    Great video mate, you stand out

  • @shahriaralom4547
    @shahriaralom4547 Рік тому

    please can you provide the link of written script

  • @shahriaralom4547
    @shahriaralom4547 Рік тому

    Thank you so much sir ☺️

  • @youssraben7789
    @youssraben7789 Рік тому

    why when i upload the dataset make this eroor Error tokenizing data. C error: Expected 2 fields in line 13, saw 4

  • @isaacp8073
    @isaacp8073 2 роки тому

    Please can you link the dataset you used. Really good video btw. Very well explained.

    • @nickstugard9062
      @nickstugard9062 2 роки тому

      Sorry for the delay. You can find the dataset I used in the description or here: github.com/NStugard/Intro-to-Machine-Learning/blob/main/spam.csv You can save it to your local machine by right-clicking the button that says "Raw," then "Save link as," then saving it as "spam.csv"

    • @nickstugard9062
      @nickstugard9062 2 роки тому

      And thank you for the kind words

    • @isaacp8073
      @isaacp8073 2 роки тому

      No problem at all. Thank you very much

  • @livingstonjeeva2219
    @livingstonjeeva2219 2 роки тому

    Nicely explained... thanks

  • @heprilesmono8908
    @heprilesmono8908 2 роки тому

    thanks, very good. What if there is new data outside the dataset, can it be detected? How to?

  • @thandobrilliant8639
    @thandobrilliant8639 2 роки тому

    This was exactly what i needed

  • @jimmypk1353
    @jimmypk1353 2 роки тому

    Highly underrated video. This channel is an undiscovered GEM!

  • @cedricvillani8502
    @cedricvillani8502 2 роки тому

    🤔 What

  • @armankisku4661
    @armankisku4661 2 роки тому

    waiting for more...😄