Seegee Aye
Seegee Aye
  • 279
  • 45 618
an interesting limit, not easy!
nicely done an uneasy limit
Переглядів: 128

Відео

a short way to solve the equation
Переглядів 504 години тому
using nth roots of a unit to solve an equation
an interesting limit
Переглядів 13321 годину тому
a nice limit question done nicely
an interesting limit
Переглядів 24721 годину тому
a nice limit question done by 3 methods
an interesting limit
Переглядів 6021 годину тому
a nice limit question
an interesting limit
Переглядів 14121 годину тому
a nice limit done by 2 methods
an interesting limit
Переглядів 100День тому
a nice limit question
an interesting limit
Переглядів 46День тому
a very nice limit question
an interesting integral
Переглядів 232День тому
a nice integral question
an interesting integral question
Переглядів 114День тому
nice methods to solve an interesting integral question
a quick way to solve a quintic euqation
Переглядів 35День тому
a quiick way to solve a quintic equation
an interesting equation
Переглядів 1,5 тис.День тому
a nice way to solve an interesting equation
an interesting limit
Переглядів 344День тому
a nice way to develop a limt
an interesting integral
Переглядів 39114 днів тому
a nice basic integral using completing the sqaure.
an interesting integral
Переглядів 2752 місяці тому
nicely done the integral
an interesting integral
Переглядів 6562 місяці тому
an interesting integral
an interesting integral
Переглядів 2762 місяці тому
an interesting integral
an interesting integral
Переглядів 4582 місяці тому
an interesting integral
an interesting integral
Переглядів 2032 місяці тому
an interesting integral
an interesting integral
Переглядів 4612 місяці тому
an interesting integral
an interesting integral
Переглядів 1562 місяці тому
an interesting integral
an interesting integral
Переглядів 4782 місяці тому
an interesting integral
an interesting integral
Переглядів 9532 місяці тому
an interesting integral
an interesting integral
Переглядів 3492 місяці тому
an interesting integral
an interesting integral
Переглядів 3002 місяці тому
an interesting integral
an interesting integral
Переглядів 3992 місяці тому
an interesting integral
an interesting integral
Переглядів 2662 місяці тому
an interesting integral
an interesting integral
Переглядів 2863 місяці тому
an interesting integral
an interesting integral
Переглядів 7373 місяці тому
an interesting integral
an interesting integral
Переглядів 3903 місяці тому
an interesting integral

КОМЕНТАРІ

  • @fahdfarachi6232
    @fahdfarachi6232 4 години тому

    I found the same result, by using directly the fact that x^(1/x) is equal to e^(ln(x)/x), and that e^(ln(x)/x) - 1 is equivalent at ln(x)/x when x approaches infinity, since e^(x) - 1 is the same as x, when x approaches 0. Then I got (ln(x)/x)^(1/ln(x)), after that I introduced the exponential and ln functions ( a^(b) = e^(b×ln(a)) ), to finally get e^(-1).

    • @seegeeaye
      @seegeeaye 4 години тому

      @@fahdfarachi6232 excellent

  • @عبدالمحسنرياضيات
    @عبدالمحسنرياضيات 9 годин тому

    Your math topics are very wonderful and we are very excited about how they will be solved, but your use of the paper and raising and lowering it interrupts our chain of thought and confuses us, so I hope that you use one space that accommodates the screen

    • @seegeeaye
      @seegeeaye 8 годин тому

      I'll definitely try, thanks

  • @narayanhari9706
    @narayanhari9706 6 днів тому

    Can I apply LH rule ( L'Hôpital ) 🙏

    • @seegeeaye
      @seegeeaye 6 днів тому

      If the conditions are met

  • @krishnakoppoju7228
    @krishnakoppoju7228 7 днів тому

    Another method over here could have been Binomial Expansion, that gives you the answer way quicker, in about 2 minutes if not less

    • @makManYt
      @makManYt 6 днів тому

      Hi @seegeeaye this wrong. It should be lim "K" -> 0 NOT lim "X" ->0 then the final limit will be n. Otherwise if x->0 final limit is 1 .

  • @RashmiRay-c1y
    @RashmiRay-c1y 9 днів тому

    But I have assumed, from the context, that P(x) is a polynomial.

  • @nbooth
    @nbooth 9 днів тому

    It seems the limit as x->0 of x^x^...^x is 1 for an even number of x's and 0 for an odd number of x's.

  • @srinivasch-re2oq
    @srinivasch-re2oq 9 днів тому

    (-3)^x If we keep x A= 2/2 Where (-3)^2 = 9 Then root 9 is 3 So x is 1

  • @RashmiRay-c1y
    @RashmiRay-c1y 9 днів тому

    Since P(x+1) = P(x) + x, P(x) must be quadratic. Let P(x) = ax^2+bx+c. Again, P(1)=P(0) which means a+b+c = c which gives b=-a. So, P(x) = a(x^2-x) + c. Again, P(2) = P(1) + 1 = c+1. Thus, a(4-2) + c = 1+c which means 2a=1 or a = 1/2, So, P(x)=1/2(x^2-x) + c. I am assuming that P(x) is a polynomial. So, periodic functions are disallowed.

    • @AlexisSelezneff
      @AlexisSelezneff 9 днів тому

      "Since P(x+1) = P(x) + x, P(x) must be quadratic" is not totally true. you have to assume that P il polynomial to say that. And that is exactly my point : you can add "cos(x/(2pi))" and it will be a valid solution.

  • @vishalmishra3046
    @vishalmishra3046 10 днів тому

    Just like i^2 = -1 similarly, this problem needs ln(-1) x = ln(3) / ln(-3) = ln(3) / (ln(3) + ln(-1)) but -1 = e^(i pi) so ln(-1) = i pi Therefore, x = ln(3) / (ln(3) + i pi) and also ln(3) / (ln(3) + i pi + i 2 pi n) [ since e^(i 2 pi n) = 1, so ln(-1) = i pi + i 2 pi n for any integer n ]

    • @cybermike66
      @cybermike66 10 днів тому

      Love your use of Euler's identity. A beautiful and simple argument which provides all the complex solutions to the problem, and moreover, also happens to be correct. Good job!

    • @AH-jt6wc
      @AH-jt6wc 9 днів тому

      Much simpler !

  • @MASHabibi-d2d
    @MASHabibi-d2d 10 днів тому

    Thanks for an other video master

  • @gelbkehlchen
    @gelbkehlchen 12 днів тому

    Solution: e^x e^x f(x) = ∫ln(t)*dt = ∫ln(t)*1*dt = 2 2 ------------------------------------ Solution by partial integration: Partial integration can be derived from the product rule of differential calculus. The product rule of differential calculus states: (u*v)’ = u’*v+u*v’ |-u’*v ⟹ (u*v)’-u’*v = u*v’ ⟹ u*v’ = (u*v)’-u’*v |∫() ⟹ ∫u*v’*dx = u*v-∫u’*v*dx ------------------------------------ e^x e^x e^x f(x) = [ln(t)*t]-∫1/t*t*dt = x*e^x-2*ln(2)-[t] = x*e^x-2*ln(2)-(e^x-2) 2 2 2 f(x) = x*e^x-e^x+2-2*ln(2) Now is: ln(2) ln(2) ∫x*f(x)*dx = ∫{x²*e^x-x*e^x+[2-2*ln(2)]*x}*dx = 0 0 (1) Solution of the indefinite integral ∫x*e^x*dx: ∫x*e^x*dx = ------------------------------------ Solution by partial integration: Partial integration can be derived from the product rule of differential calculus. The product rule of differential calculus states: (u*v)’ = u’*v+u*v’ |-u’*v ⟹ (u*v)’-u’*v = u*v’ ⟹ u*v’ = (u*v)’-u’*v |∫() ⟹ ∫u*v’*dx = u*v-∫u’*v*dx ------------------------------------ = x*e^x-∫e^x*dx = x*e^x-e^x+C = e^x*(x-1)+C (2) Solution of the indefinite integral ∫x²*e^x*dx: ∫x²*e^x*dx = ∫x*(x*e^x)*dx = ------------------------------------ Solution by partial integration: Partial integration can be derived from the product rule of differential calculus. The product rule of differential calculus states: (u*v)’ = u’*v+u*v’ |-u’*v ⟹ (u*v)’-u’*v = u*v’ ⟹ u*v’ = (u*v)’-u’*v |∫() ⟹ ∫u*v’*dx = u*v-∫u’*v*dx Look at (1): ------------------------------------ = x*(x*e^x-e^x)-∫(x*e^x-e^x)*dx = e^x*(x²-x)-(x*e^x-e^x-e^x)+C = e^x*(x²-x)-(x-2)*e^x+C = e^x*(x²-2x+2)+C Now is: ln(2) ln(2) ∫x*f(x)*dx = ∫{x²*e^x-x*e^x+[2-2*ln(2)]*x}*dx = 0 0 ln(2) = [e^x*(x²-2x+2)-e^x*(x-1)+[2-2*ln(2)]/2*x²] 0 ln(2) = [e^x*(x²-3x+3)+[1-ln(2)]*x²] 0 = 2*[ln²(2)-3*ln(2)+3]+[1-ln(2)]*ln²(2)-3 = 2*ln²(2)-6*ln(2)+6+ln²(2)-ln³(2)-3 = -ln³(2)+3*ln²(2)-6*ln(2)+3 ≈ -0,0505

  • @novikovarts
    @novikovarts 12 днів тому

    Very cool

  • @MASHabibi-d2d
    @MASHabibi-d2d 13 днів тому

    Thanks for an other video master

  • @MASHabibi-d2d
    @MASHabibi-d2d 17 днів тому

    Thanks for an other video master

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 19 днів тому

    This is the Weierstrass substitution.

  • @kevinmadden1645
    @kevinmadden1645 24 дні тому

    Why not let e raised to the power of -x equal sine theta?

    • @seegeeaye
      @seegeeaye 23 дні тому

      Yes you could. Then the integral becomes int cosθ cotθ dϑ from π/6 to π/2, and it will end up with the same answer. Compare which way is shorter.

  • @MASHabibi-d2d
    @MASHabibi-d2d 26 днів тому

    Thanks for an other video master.

  • @leonardobarrera2816
    @leonardobarrera2816 26 днів тому

    How did you factor a pi/2 on 2:33? I think you made too many mistakes

  • @mohammedamohamed1885
    @mohammedamohamed1885 28 днів тому

    Also you may solve woth Feynman taknic

  • @pedropiata648
    @pedropiata648 Місяць тому

    Wow, just now I realised you could use the d(cosx) notation for IBP 🤯🤯

    • @seegeeaye
      @seegeeaye Місяць тому

      see many of my other videos, this is a commonly practical way of writing, simplifing integrations

  • @peternyekete6802
    @peternyekete6802 Місяць тому

    Great video

  • @holyshit922
    @holyshit922 Місяць тому

    Rewrite as \int{\frac{e^{x}}{1+\cos{x}} dx} + \int{\frac{e^{x}\sin{x}}{1+\cos{x}} dx} Integrate by parts \int{\frac{e^{x}\sin{x}}{1+\cos{x}} dx} with u = \frac{\sin{x}}{1+\cos{x}} , dv = e^{x}dx and combine integrals

  • @holyshit922
    @holyshit922 Місяць тому

    I see integration by parts here with u = ln(x)

  • @Mediterranean81
    @Mediterranean81 2 місяці тому

    τ

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @Mediterranean81
    @Mediterranean81 2 місяці тому

    π ln (2) / 2

  • @avielabc604
    @avielabc604 2 місяці тому

    Using kings rule would solve it a lot quicker 🙌

  • @GraysThoughtSpace
    @GraysThoughtSpace 2 місяці тому

    Wow I would never have thought of it this way! I split it into integrals between -π~0 and 0~π and it turns into (∫[-π, 0] (x + |x|)sinx dx + ∫[-π, 0] (x + |x|)sinx dx), and now since x in the first integral is always negative, you can write |x| as -x, and the same logic allows you to write |x| as x in the second integral. So you end up with ∫[-π, 0] (x - x)sinx dx + ∫[-π, 0] (x + x)sinx dx which is ∫[-π, 0] 0 · sinx dx + ∫[-π, 0] 2x · sinx dx = 0 + 2 · ∫[-π, 0] sin dx = 0 + 2π = 2π

  • @محمدالزيداوي-ه3ت
    @محمدالزيداوي-ه3ت 2 місяці тому

    Your writing is so wonderful.❤❤❤❤❤

  • @gelbkehlchen
    @gelbkehlchen 2 місяці тому

    Solution: ∫1/(5^x+1)*dx = ∫(5^x+1-5^x)/(5^x+1)*dx = ∫(5^x+1)/(5^x+1)*dx-∫5^x/(5^x+1)*dx = ∫dx-∫5^x/(5^x+1)*dx = x-∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*dx = x-1/ln(5)*∫e^[x*ln(5)]/{e^[x*ln(5)]+1}*ln(5)*dx --------------------- Substitution: u = e^[x*ln(5)]+1 du = ln(5)*e^[x*ln(5)] --------------------- = x-1/ln(5)*∫1/u*du = x-1/ln(5)*ln|u|+C = x-1/ln(5)*ln|e^[x*ln(5)]+1|+C = x-1/ln(5)*ln|5^x+1|+C Checking the result by deriving: [x-1/ln(5)*ln|5^x+1|+C]’ = 1-1/ln(5)*1/(e^[x*ln(5)]+1)*e^[x*ln(5)]*ln(5) = 1-5^x/(5^x+1) = (5^x+1-5^x)/(5^x+1) = 1/(5^x+1) everything okay!

  • @dan-florinchereches4892
    @dan-florinchereches4892 2 місяці тому

    I would split the fractions. First lets work on ploynomial on denominator X^4=-1 X^2=+-i X^2=i => x1=√2/2(1+i) x2=-√2/2(1+i) X^2=-i => x3=√2/2(1-i) X4=-√2/2(i-i). Now x1*x3=1/2(1+1)=1 and x1+x3=√2 X2x4=1 and x2+x4=-√2 So x^4+1=(x^2+√2x+1)(x^2-√2x+1) (Ax+B)/(X^2+√2x+1)+(Cx+D)/(X^2-√2x+1)=X^2/(x^4+1) (Ax+B)(X^2-√2x+1)+(Cx+D)(X^2+√2x+1)=X^2 X=√2/2(1+i) => (D+C*√2/2(i+1))*(i+1+i+1)=+i D(2+2i)+2√2C*i=i D=0 C=1/2√2 Similarly then A=0 B=-1/2√2 => X^2/(x^4+1)=√2/4(1/x^2-√2x+1)-1/(x^2+√2x+1))=√2/4(1/((x-√2/2)^2+(√2/2)^2)-1/((x+√2/2)^2+(√2/2)^2)) Now all that is left is using the identity Arctan'(x/a)=a/(x^2+a^2) I missed an x on nunerator so we need to first make the top similar to derivative of denominator first by afdind and subtracting a number which will resilt in logarithm antiderivative and then the arcatngent formula

  • @CodexMathematica
    @CodexMathematica 2 місяці тому

    a good part of mathematic

  • @emerald_eyes
    @emerald_eyes 2 місяці тому

    Just take divide numerator and denominator by 5^x. You get integral of dx/5^x(1+1/5^x) Then you set u=1/5^x, du=ln(1/5)/5^x. dx Substitute into the equation 1/ln(1/5) × integral of du/1+u. And the answer is ln(1+1/5^x)/ln(1/5)

    • @seegeeaye
      @seegeeaye 2 місяці тому

      divede 5^x is to multiply 5^-x, the same

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    14‏/11‏/2024

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @محمدالزيداوي-ه3ت
    @محمدالزيداوي-ه3ت 2 місяці тому

    Buteful 🎉🎉🎉

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @MASHabibi-d2d
    @MASHabibi-d2d 2 місяці тому

    Thanks, if the integral had no upper and lower limits, how would it be solved, Professor?

    • @seegeeaye
      @seegeeaye 2 місяці тому

      here is to answer your question ua-cam.com/video/z6W856M3Fpw/v-deo.html

  • @MASHabibi-d2d
    @MASHabibi-d2d 2 місяці тому

    Thanks for an other video master

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    Thanks

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @tgeofrey
    @tgeofrey 2 місяці тому

    You amazing me with those internal half angles

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @MASHabibi-d2d
    @MASHabibi-d2d 2 місяці тому

    Thanks for an other video master

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx 2 місяці тому

    an interesting integral

  • @maxvangulik1988
    @maxvangulik1988 2 місяці тому

    I=int((xsec^2(x)+tan(x))/(1+xtan(x))^2)dx t=1+xtan(x) dt=(xsec^2(x)+tan(x))dx I=int(t^-2)dt I=-1/t+C I=-cos(x)/(cos(x)+xsin(x))+C

    • @maxvangulik1988
      @maxvangulik1988 2 місяці тому

      bro changed the problem on step 3 for no reason