averagedice
averagedice
  • 2
  • 15 825
How Can Competitive Programming Geometry (sometimes) be Beautiful #SoME3
my submission to #SoME3
prerequisites: mostly high-school math and coding knowledge, also if you are familiar with norms and metrics you can skip introduction to them
bgm: debussy reverie, debussy ballade, debussy clair de lune
there are some audio issues but can't re-record due to sickness
also this is my first non-introductory level manim usage, hence I couldn’t translate animations in my head into perfect manimations, yet the tool is incredibly powerful!
00:00 Introduction
00:30 Naive approach
01:00 Asymptotic analysis
01:57 Statistical approach
04:35 Brief explanation of norms on the plane
08:46 Core idea of the solution
10:15 Solution
Переглядів: 5 292

Відео

unexpected geometric solution for algebraic problem
Переглядів 11 тис.Рік тому
exploring 3b1b's manim

КОМЕНТАРІ

  • @your_anium
    @your_anium 24 дні тому

    (x+1)(y+1)=5 .....(I) (x+1)(z+1)=10 .....(II) (y+1)(z+1)=37 .....(III) Divide (I) by (II):- (z+1)=2(y+1) Putting in (III):- 2(y+1)²=37 y = ±√(37/2)

  • @typo691
    @typo691 3 місяці тому

    Absolutely did not expect Murasa's theme. Truly a convegence of two things I love

  • @mathmachine4266
    @mathmachine4266 3 місяці тому

    If we remove the 4th restriction and instead allow x, y, and z to be any complex number, there are 4 solutions: x=(√(721+493√(889))±√(-721+493√(889))i)/√(5334) y=(-x-√(16-3x²))/2 z=(-x-√(36-3x²))/2 and x=(-√(721+493√(889))±√(-721+493√(889))i)/√(5334) y=(-x+√(16-3x²))/2 z=(-x+√(36-3x²))/2

  • @rome8726
    @rome8726 5 місяців тому

    beautiful😮

  • @aryawijayaa95
    @aryawijayaa95 5 місяців тому

    Indian: "I solved it mentally without catching a pen"

  • @Vaaaaadim
    @Vaaaaadim 6 місяців тому

    Reminds me of the Steinhaus Longimeter

  • @shyaamganesh9981
    @shyaamganesh9981 6 місяців тому

    This was from CMI BSc entrance, cannot recall the year.

  • @S1GMATHS
    @S1GMATHS 6 місяців тому

    Wow, beatiful and simple! How maths should be

  • @hallfiry
    @hallfiry 7 місяців тому

    Here's a very quick algebra solution using the fact that x,y,z>0: 1) x²+xy+y²=4 => y²<4 => y<2 2) similarly z<3 3) y²yz+z² < 2²+2*3+3² < 36.

  • @derciferreira2523
    @derciferreira2523 7 місяців тому

    Beautiful proof.

  • @pokemil5705
    @pokemil5705 7 місяців тому

    Another solution: 36=y^2+yz+z^2<=2(y^2+z^2)<4x^2+2xy+2xz+2y^2+2z^2=2*(4+9)=26, which is a contradiction.

    • @Grassmpl
      @Grassmpl 5 місяців тому

      To clarify: is your first inequality just Cauchy Swartz?

  • @МаксимАндреев-щ7б
    @МаксимАндреев-щ7б 7 місяців тому

    In complex plane |x-y e^(2pi/3)|^2=(x+y/2)^2+(sqrt(3)y/2)^2=x^2+xy+y^2=4, |x - y e^(2pi/3)|=2 |y e^(2pi/3) - z e^(4pi/3)|^2 = |y - z e^(2pi/3)| = y^2+yz+z^2=9 |y e^(2pi/3) - z e^(4pi/3)|=3 |z e^(4pi/3) - x| = 6 But 6=|x - z e^(4pi/3)| <= |x - y e^(2pi/3)| + |y e^(2pi/3) - z e^(4pi/3)| = 2+3 = 5 So there aren't real solutions of the system

  • @TheOiseau
    @TheOiseau 8 місяців тому

    What initially confused me were the 3 lines labelled x, y, z looking like a 3D coordinate system. It's only when I wondered how the angles could be 120° that I realized it was meant to be a 2D plane figure. ^_^

  • @pauselab5569
    @pauselab5569 10 місяців тому

    You could also use symmetric polynomials. The elementary ones can reduce the degree of this equation which is really helpful.

    • @lucaspates
      @lucaspates 9 місяців тому

      Can you tell where to search for this solution?

  • @subhayanpal8617
    @subhayanpal8617 10 місяців тому

    Could anyone explain this properly. As in here, x,y and z doesn't satisfy the triangle.(x,y,z are angled in 120°to each other) Does it mean that it can't satisfy any other triangle.(x,y,z are at random angles with each other)

    • @animeanimeanimeanimeiminsane
      @animeanimeanimeanimeiminsane 10 місяців тому

      I'm not sure whether I correctly understood what you mean but I'll try to answer: Triangle is a way to show that there are no such (x, y, z) satisfying system of equations, it wouldn't really matter whether there are "other" triangles or something like that, since we get contradiction from our triangle. Then it's kind of hard to say about "satisfying any other triangle", since there are just no such (x, y, z) We could construct other triangles with other angles which may (or may not) prove the initial problem, angles between line segments is a thing we determine, other angles could be helpful for other systems, e.g. { x+y=6, x^2+z^2=9, y^2+z^2=4 (x, y, z > 0) } could be solved in the same way but with other angles

  • @samueldeandrade8535
    @samueldeandrade8535 11 місяців тому

    This youtuber has 2 videos? 2 videos??? Please! Are you going to make more?

    • @animeanimeanimeanimeiminsane
      @animeanimeanimeanimeiminsane 11 місяців тому

      Yeah, I want to be making ~1 "fullsize" video a month in 2024 upd: i could not fullfill my promises

  • @samueldeandrade8535
    @samueldeandrade8535 11 місяців тому

    If everything is correct, and I think it is, man, that's brilliant.

  • @ウーロンハイ-u7w
    @ウーロンハイ-u7w 11 місяців тому

    美しい! Beautiful!

  • @ppbuttocks2015
    @ppbuttocks2015 11 місяців тому

    i don get it

    • @animeanimeanimeanimeiminsane
      @animeanimeanimeanimeiminsane 11 місяців тому

      If there was a solution (x, y, z) we could construct three line segments from a single point with pi/3 angle between them with length (x, y, z) respectively. Then we could construct a triangle like in video and we can find length of any of its edges (using law of cosines and initial question parameters), but there can't be such triangle due to triangle inequality hence there can't be solution (x, y, z).

  • @mathvisuallyexplained6839

    Why would you call a problem given by system of algebraic equations purely analytic? I would say quite the opposite, that it’s purely algebraic XD (maybe only except the inequality x,y,z>0 not being quite algebraic)

  • @billycheung5114
    @billycheung5114 Рік тому

    Clean

  • @andrewandrei3062
    @andrewandrei3062 Рік тому

    Is this touhou music? Overall, very based indeed

  • @Maximxls
    @Maximxls Рік тому

    very cool!

  • @1.4142
    @1.4142 Рік тому

    4:32 optical illusion

  • @chovuse
    @chovuse Рік тому

    Very interesting ! Thanks

  • @hamiltonianpathondodecahed5236

    noice solution

  • @andreivlasenko527
    @andreivlasenko527 Рік тому

    Very pretty video, did not expect such math to be applied directly to such problem. Overall, calculating efficient approximations of values are beautiful in how they may be counterintuitive at first, yet absolutely logical when you think about them

  • @korigamik
    @korigamik Рік тому

    Really good video. Can you share the source code for the video?

    • @animeanimeanimeanimeiminsane
      @animeanimeanimeanimeiminsane Рік тому

      Thanks! Since it was my first project with manim all source code is such an atrocity that i deleted it once I uploaded video so I couldn't translate mistakes from that code to future projects.

  • @kartik4792
    @kartik4792 Рік тому

    Great video!

  • @aviralsood8141
    @aviralsood8141 Рік тому

    What a beautiful problem! And a very well-made video

  • @OpsAeterna
    @OpsAeterna Рік тому

    brings me back to my codeforces days man, super fun

  • @pal181
    @pal181 Рік тому

    Too strong russian accent, the rest is great

  • @rosettaroberts8053
    @rosettaroberts8053 Рік тому

    This reminds me of a technique used in machine learning for dimensional reduction. If you have data with a very high dimensionality, you can reduce the dimensionality by projecting the data onto a random set of basis vectors. It tends to be pretty good at preserving the norms between the data points. One example would be if you have a discrete graph/network with a million points. The adjacency vector representatuon for each point would have a dimensionality of 1 million. You could then use the technique to reduce the dimensionality to only a few hundred pretty easily and generate an embedding of the graph.

  • @ddddddd5075
    @ddddddd5075 Рік тому

    УРА УРА ДАВАЙ ДАВАЙ

  • @shashankbhatt4609
    @shashankbhatt4609 Рік тому

    Really liked the video! Could you give a link to the problem? on icpc website or some online judge

    • @animeanimeanimeanimeiminsane
      @animeanimeanimeanimeiminsane Рік тому

      Thanks! I couldn’t find problem anywhere except the main contest (Moscow Regional Qualifiers 2021), where you have to be pre-registered to upsolve, sorry, can’t help you here…

  • @purplenanite
    @purplenanite Рік тому

    Damn! that is pretty!

  • @ddddddd5075
    @ddddddd5075 Рік тому

    Omg based