Aaron Greiner
Aaron Greiner
  • 5
  • 33 515
ADE Com Dev Trip 1
ADE Com Dev Trip 1
Переглядів: 73

Відео

Death of a Snowman - Sail
Переглядів 1867 років тому
Mount Babson, Sail edition
Plantequin Challenge - Olin College
Переглядів 5908 років тому
A greener take on the #MannequinChallenge
SVD How To
Переглядів 32 тис.9 років тому
Learn how to do Singular Value Decomposition (SVD)!
WE CAN PANINI THAT
Переглядів 44210 років тому
Can't finish your food? WE CAN PANINI THAT!

КОМЕНТАРІ

  • @abdulghanialmasri5550
    @abdulghanialmasri5550 2 роки тому

    Very well explained 👏

  • @aurkom
    @aurkom 2 роки тому

    Amazing video! Wish the channel made more of these!

  • @MsAlarman
    @MsAlarman 3 роки тому

    Wow! Breathtaking your transparency making a black box turn into a yummy white box !

  • @shahabmnahdi2792
    @shahabmnahdi2792 4 роки тому

    I have watched more than 100 SVD videos so far, but this one is the best and complete one!!!

  • @gojoubabee
    @gojoubabee 5 років тому

    Thank you!! This was very helpful :)

  • @jay-fk6pl
    @jay-fk6pl 5 років тому

    really helpful. thanks!

  • @mariaa6181
    @mariaa6181 5 років тому

    Congrats! Great video with a nice explanation!

  • @TrueBlur
    @TrueBlur 5 років тому

    I think this video is actually going to save me on my final exam. Excellent video, thank you so much!!!

  • @billwindsor4224
    @billwindsor4224 5 років тому

    @Aaron and @Mimi - this is an excellent walk-through of the SVD computation -- one of the top explanations I have found out of _over 30 tutorials_ on PCA and SVD I have studied. Especially you show the 'why' of each computation: that is, given that we know that eigenvalues and eigenvectors will be valuable for matrix data analysis, you show why each step in the matrix computations relates to the eigenvalues and eigenvectors (you explain both the concepts and the matrix computation mechanics), and you show how each step drives to the spectral decomposition of the matrix. And you use the industry standard notation for the SVD computation (with U, Sigma, and V), which helps when we compare your notes to other sources. I see an immense amount of careful preparation you have done for this seminar. *Thank you and much respect to you both.*

  • @sourabhghorpade9741
    @sourabhghorpade9741 5 років тому

    wow,great teaching,simple way to explain tough concepts.Thanks!

  • @raghunathan9026
    @raghunathan9026 5 років тому

    Really, awesome explanation!

  • @ahmetcihan8025
    @ahmetcihan8025 5 років тому

    This is insane thanks so much...

  • @gsuri1992
    @gsuri1992 5 років тому

    This is a vivid explanation video on SVD... I can say only one word.. "Awesome". Please make videos on some of the mathematical concepts like Affine and Perspective transformations.

  • @guestimator121
    @guestimator121 5 років тому

    SVD is also used with the Principal Component Analysis and very often with the topic modeling, and basically every time you want to lower the number of parameters

  • @ericsauber7175
    @ericsauber7175 5 років тому

    Wow, a math tutorial with good audio quality, good handwriting, and a calm and soothing voice that I can understand. And jokes? A+

  • @KayYesYouTuber
    @KayYesYouTuber 6 років тому

    Really beautiful illustration of a complex subject. Very nice madam. Thank you very much for taking the time to make this video. God bless you.

  • @yarykPlut
    @yarykPlut 6 років тому

    God bless this kind girl. Math lectures often omit to remind why we should bother about new formulas, techniques and what they really mean in heart, so they jump out unexpectedly in front of your eyes and as such quickly disappear from memory. Unlike this footage.

  • @brielleibe8503
    @brielleibe8503 6 років тому

    Wow, thank you so much! Super helpful

  • @senthilkumaranmahadevan6531
    @senthilkumaranmahadevan6531 6 років тому

    Being great is not being great , being great is being simple.... a fantastic lecture that has been sequenced in such elegance and in such simplicity that it is relay great. ( let your work continue to contribute knowledge to every one .... Thank a Lot ...... great!

  • @sandeepma5390
    @sandeepma5390 6 років тому

    Thanks for simplifying SVD.Very helpful video.

  • @lengooi6125
    @lengooi6125 6 років тому

    What a great explaination of SVD.As simple as as clear as it get! WELL DONE

  • @andywang8564
    @andywang8564 6 років тому

    Best svd video I've found!

  • @asrafmohamedmoubark
    @asrafmohamedmoubark 6 років тому

    one of the best video ever !!!!

  • @Dedi369
    @Dedi369 6 років тому

    very good explanation!!

  • @dipeshwalte9849
    @dipeshwalte9849 6 років тому

    Awesome explanation!

  • @alanmarkkristensen2878
    @alanmarkkristensen2878 6 років тому

    I came here expecting Socratically Verbose Dragons but all i got was the maths

  • @Wonderlives
    @Wonderlives 6 років тому

    This is such a nice video! I really like your style of teaching!

  • @professionalprocrastinator8103
    @professionalprocrastinator8103 6 років тому

    to show that AA' or A'A are symmetric, you could've just taken the transpose. It would have been immediate.

  • @Thrustmetallic
    @Thrustmetallic 6 років тому

    excellent way of teaching. She is absolutely fantastic.

  • @nkd02
    @nkd02 7 років тому

    Very nice :)

  • @אלידיבה
    @אלידיבה 7 років тому

    Fuck! That video was excatly what I needed!

  • @datascify
    @datascify 7 років тому

    Best video of SVD

  • @andrewl5267
    @andrewl5267 7 років тому

    Do you get the same eigenvector multiple times when an eigenvalue has an algebraic multiplicity greater than one?

  • @vishayraina5626
    @vishayraina5626 7 років тому

    Do U and V matrices always have to be orthonormal? If yes, how do we handle the case of repeated eigenvalues

  • @gordonwebb6700
    @gordonwebb6700 7 років тому

    I'm long retired from teaching now but this is the kind of introduction I would have really enjoyed giving. Surely a lot of viewers will find that this lucid and engaging presentation has broken the logjam. I learned a lot, my thanks to Aaron & Mimi.

  • @namaa1000
    @namaa1000 7 років тому

    That is awesome. Finally I got it

  • @cantaycaliskan538
    @cantaycaliskan538 7 років тому

    Wonderful!!! Thank you so much :)

  • @uniqueavi91
    @uniqueavi91 7 років тому

    Thanks a lot for this tutorial. got a clear vision of SVD due to this. Can you please do the same for CVR decomposition? It will be of great help then. Thanks in advance.

  • @vladislavmatiusenco1089
    @vladislavmatiusenco1089 7 років тому

    Very nice explanation, was very helpful. The bit about Taylor Series blew my mind! Thank you

  • @huyhungle6062
    @huyhungle6062 7 років тому

    i'm learning machine learning and don't understand what SVD is. thank for good video.

    • @mqlkome
      @mqlkome 7 років тому

      That's awesome, I wish you all the best in your studies!

  • @Brun69M
    @Brun69M 7 років тому

    Thanks!

  • @HimanshuAroraa
    @HimanshuAroraa 7 років тому

    It was really helpful, thank you!

  • @ravindersingh5671
    @ravindersingh5671 7 років тому

    your explanation is really awesome .....amazing

    • @mqlkome
      @mqlkome 7 років тому

      Thanks! I''m happy it was helpful!

  • @nfw12
    @nfw12 7 років тому

    this video explained SVD really clearly :)

  • @AnANextLifeNewWorld
    @AnANextLifeNewWorld 8 років тому

    One of the best videos on SVD out there!

    • @mqlkome
      @mqlkome 7 років тому

      Thank you! I'm so glad you found it!

    • @diekluge
      @diekluge 5 років тому

      Agree 100%.

  • @stevenlarrick1019
    @stevenlarrick1019 8 років тому

    Hey, just want to say. This is a really quality video! Thanks a ton! With all the complicated (and often non-concrete) math involved in linear algebra its easy to forget what you are doing and why you are doing it... and this video does a great job of covering all the bases (pun intended)!

    • @mqlkome
      @mqlkome 8 років тому

      I'm so glad you found it helpful! It was a great learning experience to make, too.