Everyday Mathematics
Everyday Mathematics
  • 359
  • 150 966
2006 MIT Integration Bee, Finals Runner-up Contest, Problem 3
We solve the third problem to the 2006 MIT Integration Bee, Finals Runner-up Contest.
#mitintegrationbee #mit #mitmath #calculus #integration #mathematics #maths
Переглядів: 22

Відео

2006 MIT Integration Bee, Finals Runner Up Contest, Problem 2
Переглядів 178 годин тому
This is the solution to the second problem of the 2006 MIT Integration Bee Finals Runner-up Contest. #mitintegrationbee #mit #mitmath #integration #calculus #maths #mathematics
2006 MIT Integration Bee, Finals Runner Up Contest, Problem
Переглядів 268 годин тому
We solve the first problem of the runner up contest of the 2006 MIT Integration Bee Finals. #mitintegrationbee #mit #mitmath #integration #calculus #maths #mathematics
2006 MIT Integration Bee, Semifinal 2, Problem 4
Переглядів 642 години тому
We solve the fourth problem of the 2006 MIT Integration Bee, Semifinal 2. #mitintegrationbee #mit #mitmath #maths #mathematics #integration #calculus #hyperbolicfunctions #hyperbolic
2006 MIT Integration Bee, Semifinal 2, Problem 3
Переглядів 522 години тому
We solve a problem that employs Leibniz Integration Rule, popularly known as Feynman's technique. The third problem of the 2006 MIT Integration Bee, Semifinal 2. #mitintegrationbee #mit #integration #calculus #integrationbee #maths #mathematics #feynmantechnique #leibniz
2006 MIT Integration Bee, Semifinal 2, Problem 2
Переглядів 482 години тому
Here is the solution to the second problem of the 2006 MIT Integration Bee, semifinal 2. #mitintegrationbee #mit #integration #integrationbee #calculus #maths #mathematics
2006 MIT Integration Bee, Semifinal 2, Problem 1
Переглядів 762 години тому
We solve the first problem of the 2006 MIT Integration Bee semifinal 2. #mit #mitintegrationbee #integration #calculus #maths #mathematics #trigonometricfunctions #trigonometry
2006 MIT Integration Bee, Semifinal 1, Problem 7
Переглядів 2097 годин тому
We solve the 7th and final problem of the 2006 MIT Integration Bee. We hope you like, share and subscribe. #mit #mitintegrationbee #maths #mathematics #integrationbee #integration #calculus
2006 MIT Integration Bee, Semifinal 1, Problem 6
Переглядів 727 годин тому
We solve the 6th problem of the 2006 MIT Integration Bee, Semifinal 1. Please subscribe, like and share. #mitintegrationbee #mit #maths #mathematics #integration #calculus
2006 MIT Integration Bee, Semifinal 1, Problem 5
Переглядів 1217 годин тому
Here we solve the 5th problem of the 2006 MIT Integration Bee, Semifinal 1. We hope you enjoy our version of the solution. #mitintegrationbee #mit #mitmath #maths #mathematics #integration #calculus
2006 MIT Integration Bee, Semifinal 1, Problem 4
Переглядів 8112 годин тому
We present the fourth problem of the 2006 MIT Integration Bee, Semifinal 1. We hope you enjoy our version of the solution. #mitintegrationbee #mit #mitmath #mathematics #maths #integration #calculus #education
2006 MIT Integration Bee, Semifinal 1, Problem 1
Переглядів 11412 годин тому
We present the first problem of the 2006 MIT Integration Bee, Semifinal 1. We hope you enjoy following along. #mitintegrationbee #mit #maths #mathematics #integration #calculus #education
2006 MIT Integration Bee, Semifinal 1, Problem 3
Переглядів 11312 годин тому
Here we present a solution of the third problem of the 2006 MIT Integration Bee, Semifinal 1. #mitintegrationbee #mit #mitmath #integration #calculusexam #trigonometry #logarithm
2006 MIT Integration Bee, Semifinal 1, Problem 2
Переглядів 9612 годин тому
Here we solve the second problem of the 2006 MIT Integration Bee, Semifinal 1. We hope you enjoy our version of the solution. #mitintegrationbee #mit #mitmath #maths #mathematics #integrationbee #calculus #trigonometry #tricks
2006 MIT Integration Bee, Quarterfinal 4, Problem 3
Переглядів 10514 годин тому
Here is problem 3 of the 2006 MIT Integration Bee, Quarterfinal 4. Please subscribe, share and like. #maths #mathematics #mitintegrationbee #mit #mitmath #integration #integrationbee #calculus #trigonometry
2006 MIT Integration Bee, Quarterfinals 4, Problem 2
Переглядів 9314 годин тому
2006 MIT Integration Bee, Quarterfinals 4, Problem 2
2006 MIT Integration Bee, Quarterfinals 4, Problem 1
Переглядів 12314 годин тому
2006 MIT Integration Bee, Quarterfinals 4, Problem 1
2006 MIT Integration Bee, Quarterfinals, Quarterfinals 1, Problem 3
Переглядів 27619 годин тому
2006 MIT Integration Bee, Quarterfinals, Quarterfinals 1, Problem 3
2006 MIT Integration Bee, Quarterfinals, Quarterfinals 1, Problem 4
Переглядів 19419 годин тому
2006 MIT Integration Bee, Quarterfinals, Quarterfinals 1, Problem 4
2006 MIT Integration Bee, Quarterfinals, Quartfinals 1, Problem 2
Переглядів 35519 годин тому
2006 MIT Integration Bee, Quarterfinals, Quartfinals 1, Problem 2
2006 MIT Integration Bee, Quarterfinals, Quarterfinal 1, Problem 1
Переглядів 13119 годин тому
2006 MIT Integration Bee, Quarterfinals, Quarterfinal 1, Problem 1
2006 MIT Integration Bee, Regular Season, Round 4
Переглядів 8619 годин тому
2006 MIT Integration Bee, Regular Season, Round 4
2006 MIT Integration Bee, Regular Season, Rounds 2 & 3
Переглядів 18521 годину тому
2006 MIT Integration Bee, Regular Season, Rounds 2 & 3
MIT Integration Bee 2006 Regular Season, Round 1
Переглядів 244День тому
MIT Integration Bee 2006 Regular Season, Round 1
MIT 2018 Integration Bee Qualifying Exam, Problem 19
Переглядів 198День тому
MIT 2018 Integration Bee Qualifying Exam, Problem 19
MIT 2018 Integration Bee Qualifying Exam, Problem 18
Переглядів 140День тому
MIT 2018 Integration Bee Qualifying Exam, Problem 18
MIT 2018 Integration Bee Qualifying Exam, Problem 17
Переглядів 80День тому
MIT 2018 Integration Bee Qualifying Exam, Problem 17
MIT 2018 Integration Bee Qualifying Exam, Problem 9
Переглядів 248День тому
MIT 2018 Integration Bee Qualifying Exam, Problem 9
MIT 2018 Integration Bee Qualifying Exam, Problem 20
Переглядів 81День тому
MIT 2018 Integration Bee Qualifying Exam, Problem 20
MIT 2018 Integration Bee Qualifying Exam, Problem 16
Переглядів 107День тому
MIT 2018 Integration Bee Qualifying Exam, Problem 16

КОМЕНТАРІ

  • @VarunKadapatti
    @VarunKadapatti 2 дні тому

    Can't we use the direct pattern for such a question? Integration dx/root(x^2-a^2) = log | x + root(x^2-a^2) | + C

  • @sinajupiter12
    @sinajupiter12 3 дні тому

    sinx - cosx = sqr(2). sin(x - pi/4) and NOT sqr(2). sin(pi/4 - x)

  • @BladimirRemon
    @BladimirRemon 5 днів тому

    Simplemente aplica la fórmula para esa integral indefinida y al poner los límites de integración colocar con límite en x=1, lo cual se evalua directamente y el resultado es rápido y sencillo.

  • @KelsiBertina
    @KelsiBertina 6 днів тому

    You're doing a fantastic job! I have a quick question: My OKX wallet holds some USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). How can I transfer them to Binance?

  • @davodeky
    @davodeky 7 днів тому

    The problem looks very intimidating at first glance!

  • @TahahShahbaz
    @TahahShahbaz 11 днів тому

    couldnt you just let the bottom be 0.5sin2x

    • @EverydayMathematics
      @EverydayMathematics 10 днів тому

      We could let that happen, then the question would be: how do you integrate 1/2csc(2x)?

  • @gurucharansendhil6432
    @gurucharansendhil6432 12 днів тому

    honestly mind blowing

  • @Alkane2
    @Alkane2 13 днів тому

    Thank you so much for taking the time to make another video based on my comment! I truly appreciate the effort, and your explanation has helped me a lot. Keep up the amazing work! And I actually messed up with the calculation,thats why it didn't show the correct result

  • @mrbutish
    @mrbutish 13 днів тому

    It looks like that interference pattern from the double slit experiment

  • @Alkane2
    @Alkane2 14 днів тому

    I have put sin2θ=2tanθ/(1+tan²θ) formula,but its showing different result

    • @EverydayMathematics
      @EverydayMathematics 13 днів тому

      Thank you for the question. Here is our version of the solution based on your question: ua-cam.com/video/tc6ARwcIrhA/v-deo.html

  • @SLAVSkate
    @SLAVSkate 19 днів тому

    15:56 isn't du/dx = -4/x^5?

  • @System_exit
    @System_exit 20 днів тому

    too easy

  • @林明宏-q4d
    @林明宏-q4d 25 днів тому

    Just use DI method

    • @EverydayMathematics
      @EverydayMathematics 25 днів тому

      I think it is the same method, but people just use fancy names.... Thank you for sharing!

    • @林明宏-q4d
      @林明宏-q4d 25 днів тому

      @@EverydayMathematics their same method ,but DI method is a short cut of your 9 minutes process,faster and more intuitive.🤌🏻

    • @林明宏-q4d
      @林明宏-q4d 24 дні тому

      @ DI method is the same method as integration by parts, same meaning ,but way more faster and convenient, save a lot of time. share this information to you.

    • @EverydayMathematics
      @EverydayMathematics 23 дні тому

      @@林明宏-q4d , thank you for sharing! It is a very nice abbreviation of the method!

  • @Shagra-h3b
    @Shagra-h3b 25 днів тому

    who would have guessed the sin square factor simply halves the gaussian integral. interesting video keep it up

  • @dakshagarwal9215
    @dakshagarwal9215 26 днів тому

    Why such a long solution? Can’t you directly apply kings rule. Convert cot to tan, take lcm and add? You will get answer within 15 seconds.

    • @EverydayMathematics
      @EverydayMathematics 26 днів тому

      That might work- King's property pretty much derives from what I tried to do here.....the goal here is to try and be as educational as possible.

  • @holyshit922
    @holyshit922 26 днів тому

    sin(x)+1 = cos^2(x/2)+2cos(x/2)sin(x/2)+sin^(x/2) sin(x)+1 = (cos(x/2) + sin(x/2))^2 sin(x)+1 =(sqrt(2)*(cos(x/2)*1/sqrt(2) + sin(x/2)*1/sqrt(2)))^2 sin(x)+1 =(sqrt(2)*cos(x/2 + pi/4))^2 sqrt(sin(x)+1) = |sqrt(2)*cos(x/2 - pi/4)| sqrt(sin(x)+1) = sqrt(2)*|cos(x/2 - pi/4)| sqrt(2)*cos(x/2 - pi/4) Indefinite integral = 2*sqrt(2)*sin(x/2 - pi/4)+C Indefinite integral = 2*sqrt(2)*sin(x/2 - pi/4)*sqrt(2)*cos(x/2 - pi/4)/sqrt(1+sin(x))+C Indefinite integral = 2*2*sin(x/2 - pi/4)*cos(x/2 - pi/4)/sqrt(1+sin(x))+C Indefinite integral = 2*sin(x - pi/2)/sqrt(1+sin(x))+C Indefinite integral = -2*cos(x)/sqrt(1+sin(x))+C

  • @sirsmashez1740
    @sirsmashez1740 29 днів тому

    Why does e^x become e^2x?

    • @ItzCamJam
      @ItzCamJam 29 днів тому

      he multiplied top and bottom by e^x i think, e^x times e^x equals e^2x

    • @sirsmashez1740
      @sirsmashez1740 29 днів тому

      @ yah got it now thanks man. Same base and multiplying just adds x + x as exponents

    • @EverydayMathematics
      @EverydayMathematics 28 днів тому

      The explanation by @ltzCamJam is correct!

  • @bossinfinite9742
    @bossinfinite9742 29 днів тому

    It's a very lengthy method Just divide the function inside integration by x^2 and Use 1+1/x^2 = t Solve and get ln√2 as answer

  • @rainsuki5013
    @rainsuki5013 Місяць тому

    Please quit the music, it's painful in headphone, raw voice is the best

  • @フリナ饅頭
    @フリナ饅頭 Місяць тому

    I prefer the original version without background music it makes us focus more on the problem

  • @octavianmaximus4205
    @octavianmaximus4205 Місяць тому

    simple and concise, great video!

  • @sarnick007
    @sarnick007 Місяць тому

    Love from India ♥ I read in class 12 and similar problem came to my exam one week back

  • @Dape-w-ez
    @Dape-w-ez Місяць тому

    im really new to integration, but integrating e to the power e to the power 2016x separated wouldn't have been easier?

  • @guposu4723
    @guposu4723 Місяць тому

    Coshx why epower x -epower-x

  • @Yellowww-f9e
    @Yellowww-f9e Місяць тому

    oh man, the 6048x is added to the power

  • @omtank6126
    @omtank6126 Місяць тому

    too ez for 12th grade

  • @xyz-w1x
    @xyz-w1x Місяць тому

    x^4 + x^2 + 1 = (x^2 + x + 1) (x^2 - x + 1) Also (x^2 + x + 1) - ( x^2 - x +1) = 2x Putting this in Numerator and then will have two term with a Quadratic in Denominator which if easily Integratable

  • @ItzThermal
    @ItzThermal Місяць тому

    Integral e^x (f(x) + f'(x)) dx = e^x f(x) + c

  • @moinpatel3706
    @moinpatel3706 Місяць тому

    You can easily apply rule : integration of 1/x^2+a^2 = 1/a tan^-1 x/a. Don't even have to assume thita after u

    • @EverydayMathematics
      @EverydayMathematics Місяць тому

      Thank you! I intended this be for teaching purpose- but you are righ, that would be a quick approach!

  • @sickomode6440
    @sickomode6440 Місяць тому

    this is a pretty good Q

  • @biscuit_6081
    @biscuit_6081 Місяць тому

    Whenever there is too much of log in integration just put lnx = u and x=e^u, then dx = e^udu ez

  • @bobdavid01
    @bobdavid01 Місяць тому

    Got the answer in my head in a few seconds. The way I thought about it was recalling that ∫f'(x)f(x)dx = 1/2[f(x)]² + c. From experience, having a log(x) and a 1/x in the same integral means a reverse chain rule with a function in the form log(f(x)) is involved (an example being ∫ logx/x dx), so I just thought about what if y = log(log(x)), and so dy/dx = d/dx(log(x)) / log(x) = 1/xlog(x), using y = log(f(x)) ⇒ dy/dx = f'(x)/f(x).

  • @maroonshaded
    @maroonshaded Місяць тому

    Yup I got it and did the same thing! Thanks for the video!

  • @nikeeplinsane2964
    @nikeeplinsane2964 Місяць тому

    Oh yes you did it at the end, nice! my bad

  • @nikeeplinsane2964
    @nikeeplinsane2964 Місяць тому

    U dont need to do all of that, Its just ln|cosh(x)| by using reverse chain rule

  • @SarahTheAmbiguous
    @SarahTheAmbiguous Місяць тому

    That's definitely one way to do it, but I did it a different way where I saw that e^(e^x+e^-x+x) = e^(e^x + e^-x) * e^x Likewise, e^(e^x+e^-x-x) = e^(e^x + e^-x) * e^-x You can then pull out the e^(e^x + e^-x) to get (e^(e^x + e^-x)) * (e^x - e^-x) After this it's just a simple u sub, u = e^x + e^-x, du = e^x - e^-x dx so the integral is simply e^u, whose integral is e^u, undoing the sub gives you e^(e^x + e^-x) + C, which is equivalent to e^2coshx + C I wouldn't be surprised if both forms were treated as correct on the exam

  • @Saransh_Tiwari69
    @Saransh_Tiwari69 Місяць тому

    Just use integration by parts 😂😂

  • @edwardmao9792
    @edwardmao9792 Місяць тому

    seems to me that this is not too hard but my lack of experience and effort put into these questions restricts me to think stuff like this within a reasonable period of time

  • @LiulMesfin-jk2kf
    @LiulMesfin-jk2kf Місяць тому

    Hats off for you sir. It is very clear and elegant solution thank you so much

  • @Drink_Water-js7
    @Drink_Water-js7 Місяць тому

    nice video

  • @gamedever
    @gamedever Місяць тому

    I was wondering about using integral of dx/√x²+a² => ln |x + √x²+a²| + C

    • @EverydayMathematics
      @EverydayMathematics Місяць тому

      Ooh yes, you can use that formula! I just don't like memorizing formulas.

  • @フリナ饅頭
    @フリナ饅頭 Місяць тому

    It could be much easier if you extract the common factor “e to the power of (ex + e minusx )”at first and the answer is basically the derivative of itself

  • @tubunmajumdar2951
    @tubunmajumdar2951 Місяць тому

    Don't you think it would be better to substitute log(logx) as u? I reckon in that case the integral can be solved in less number of steps.

    • @gamedever
      @gamedever Місяць тому

      Yes you are right! The integral becomes udu => u²/2 => (log(logx))²/2 + C

    • @EverydayMathematics
      @EverydayMathematics Місяць тому

      Yes, that indeed would make things much easier! Thank you for the suggestion!

  • @5gjmlch9
    @5gjmlch9 Місяць тому

    Too much working. Instead: tan²x = sec²x - 1 sec²x = 1/cos²x Therefore, sinx[(1/cos²x) -1] = tanxsecx - sinx Integrate this = secx + cosx +c

  • @darkknight-nw5nc
    @darkknight-nw5nc Місяць тому

    I did with, Cosx=u

  • @mwinfield1969
    @mwinfield1969 Місяць тому

    Nice video, but this only shows it is true for x < 90

    • @arikgershon
      @arikgershon Місяць тому

      True; to prove it for all x you can use Euler’s formula: e^(ix) = cos(x)+i sin(x) e^(2ix) = [e^(ix)]^2 = [cos(x)+ i sin(x)]^2 = [cos^2(x)-sin^2(x)] + i [2sin(x)cos(x)] However we also have e^(2ix) = cos(2x) + i sin(2x) Therefore, equating the imaginary parts gives us sin(2x) = 2sin(x)cos(x)

    • @mwinfield1969
      @mwinfield1969 Місяць тому

      @@arikgershon I tend to use the unit circle, but I like this use of the exponential from :)

  • @thoughtfulotaku
    @thoughtfulotaku Місяць тому

    I did this in high school

  • @filipeoliveira7001
    @filipeoliveira7001 Місяць тому

    This would be a lot quicker in the competition because the contestants would definitely have memorized the integral of sec(x) and all the other trig functions. Great solution!

    • @EverydayMathematics
      @EverydayMathematics Місяць тому

      Ooh yes! You are right! I just like doing things from th ground up without having to memorize formulas.

    • @filipeoliveira7001
      @filipeoliveira7001 Місяць тому

      @ that’s the right way to do it actually😁😁

  • @eltoso3214
    @eltoso3214 Місяць тому

    Can we see why 2(sinxcosx) is equal to sin(2x)?

  • @aj_01257
    @aj_01257 Місяць тому

    Beautiful