Tommy Occhipinti
Tommy Occhipinti
  • 293
  • 72 663
Math 140 Test 4 Review | November 2024
Review questions for Test 4. Questions covered:
00:00 Question 103C
06:02 Question 105C
11:38 Question 105D
16:09 Question 106C
18:15 Question 107C
24:58 Question 110F
Переглядів: 103

Відео

Math 471 | Chapter 3
Переглядів 117Рік тому
This video covers Chapter 3 in Tommy Occhipinti's Fall 2023 Math 471 class.
1.4 Quadratic Models | Math 150
Переглядів 117Рік тому
This video covers section 1.4 in Tommy Occhipinti's Fall 2023 Math 150 course.
Math 471 | Chapter 2
Переглядів 107Рік тому
This video covers Chapter 2 of Tommy Occhipinti's Fall 2023 Math 471 course at Luther College.
1.3 Linear Models | Math 150
Переглядів 166Рік тому
This video covers section 1.3 of Tommy Occhipinti's Math 150 course, Fall 2023.
Elliptic curves in Sage | Math 361
Переглядів 1,9 тис.3 роки тому
In this video we cover how to use Sage/CoCalc to do computations about elliptic curves and with points on elliptic curves.
Elliptic curves | Math 361
Переглядів 1,3 тис.3 роки тому
Our big introduction to elliptic curves! Elliptic curves are a specific form of cubic equations whose rational solutions have lots of interesting and useful properties, and these are a large area of study in number theory. Elkies' paper on his elliptic curve of rank ≥ 28: arxiv.org/abs/1606.07178 Sections: 00:00 Definitions 07:12 Examples 15:39 Algebra with points 20:13 Torsion points 44:29 Rank
Quadratic and cubic curves | Math 361
Переглядів 3583 роки тому
Quadratic and cubic curves | Math 361
Pollard p-1 and Fermat factoring | Math 361
Переглядів 1,1 тис.3 роки тому
Pollard p-1 and Fermat factoring | Math 361
The Chinese Remainder Theorem and RSA | Math 361
Переглядів 2,5 тис.3 роки тому
The Chinese Remainder Theorem and RSA | Math 361
Discrete logs with Pollard rho | Math 361
Переглядів 4,3 тис.3 роки тому
Discrete logs with Pollard rho | Math 361
Pollard rho factoring | Math 361
Переглядів 9 тис.3 роки тому
Pollard rho factoring | Math 361
Pollard rho introduction | Math 361
Переглядів 3,5 тис.3 роки тому
Pollard rho introduction | Math 361
Copy of Tommy Office Hours
Переглядів 133 роки тому
Copy of Tommy Office Hours
Chapter 3 summary | Math 361
Переглядів 1233 роки тому
Chapter 3 summary | Math 361
Chapter 3 Sage examples | Math 361
Переглядів 2043 роки тому
Chapter 3 Sage examples | Math 361
Applications of modular arithmetic (Chapter 2 summary, part 2) | Math 361
Переглядів 1643 роки тому
Applications of modular arithmetic (Chapter 2 summary, part 2) | Math 361
Modular arithmetic review (Chapter 2 summary, part 1) | Math 361
Переглядів 1693 роки тому
Modular arithmetic review (Chapter 2 summary, part 1) | Math 361
Computing modular inverses | Math 361
Переглядів 1823 роки тому
Computing modular inverses | Math 361
Chapter 1 summary | Math 361
Переглядів 1753 роки тому
Chapter 1 summary | Math 361
The extended Euclidean algorithm | Math 361
Переглядів 7153 роки тому
The extended Euclidean algorithm | Math 361
Final notes on cardinality | Math 220 Week 6
Переглядів 633 роки тому
Final notes on cardinality | Math 220 Week 6
The Cantor-Bernstein theorem | Math 220 Week 6
Переглядів 5533 роки тому
The Cantor-Bernstein theorem | Math 220 Week 6
Hierarchy of infinite sets | Math 220 Week 6
Переглядів 633 роки тому
Hierarchy of infinite sets | Math 220 Week 6
Sizes of infinite sets | Math 220 Week 6
Переглядів 893 роки тому
Sizes of infinite sets | Math 220 Week 6
Function proof examples | Math 220 Week 5
Переглядів 433 роки тому
Function proof examples | Math 220 Week 5
Inverse functions | Math 220 Week 5
Переглядів 403 роки тому
Inverse functions | Math 220 Week 5
Bijections | Math 220 Week 5
Переглядів 823 роки тому
Bijections | Math 220 Week 5
Onto functions | Math 220 Week 5
Переглядів 633 роки тому
Onto functions | Math 220 Week 5
One-to-one functions | Math 220 Week 5
Переглядів 593 роки тому
One-to-one functions | Math 220 Week 5

КОМЕНТАРІ

  • @diyasvibess
    @diyasvibess 6 днів тому

    no video available and explained like that, best one till yet found before my exams, just loved it

  • @JuusoAlasuutari
    @JuusoAlasuutari 7 місяців тому

    Would you find a program that generates every B(2,6)? I mean all 2²⁶ of them as Lyndon words. It only takes one to five minutes depending on CPU and other such factors. The size of the generated raw binary data (64 bits per sequence) is 512 MiB.

  • @justsomeguywithshades2318
    @justsomeguywithshades2318 9 місяців тому

    I've been typing in interval notation to find a domain for a function, have the correct answer and it is still telling me its wrong

  • @infinitum-repertorium
    @infinitum-repertorium 10 місяців тому

    Ha, I liked that there was a mistake (the minus beta thing). Perhaps you could do in videos intermittently on purpose to keep us alert. (I know I should've caught that, still not over it.)

  • @infinitum-repertorium
    @infinitum-repertorium 10 місяців тому

    :) Nice video. Thanks.

  • @infinitum-repertorium
    @infinitum-repertorium 10 місяців тому

    This is the first series that I'm watching on this channel, and I've got a feeling that this is a gold mine.

  • @Magos123
    @Magos123 Рік тому

    great video, great explanation!

  • @MattFromDC
    @MattFromDC Рік тому

    How do I do less than or equal to sign on WebWork

  • @AvinoAm
    @AvinoAm Рік тому

    Taking 1 from the numerator & adding it to the denominator will give exactly 8

  • @ShddndjHzhsb-sr2il
    @ShddndjHzhsb-sr2il Рік тому

    សុំ​បើក​សោ​អេក្រង់​របស់​ខ្ញុំ​

  • @ananttyagi7372
    @ananttyagi7372 Рік тому

    You explained Polya's motivation like no one else. Thank you so much.

  • @holdendeez69
    @holdendeez69 Рік тому

    Anyone else not able to access the "submit answers" or "check answers" button? Like it's not showing up at all anywhere but my professor keeps talking about it

  • @ananttyagi1429
    @ananttyagi1429 2 роки тому

    One of the best explanation. Thank you.

  • @ichangednametoamorecringyo1489
    @ichangednametoamorecringyo1489 2 роки тому

    how do I add units into the answers? because mine is not recognizing meters

  • @tacololo
    @tacololo 2 роки тому

    Recently noticed coincidentally that 98765432/12345679 = 8 exactly what do you say?

  • @PjMCLP
    @PjMCLP 2 роки тому

    got bored, typed on my calculator and noticed this. now im here hahaha

  • @coderSaMon
    @coderSaMon 2 роки тому

    Please stop shouting 😅😅

  • @BernardoCT
    @BernardoCT 2 роки тому

    Pop up windows do not appear in the video. =)

  • @lhieanpahilagmago5244
    @lhieanpahilagmago5244 2 роки тому

    is this coordinatizing the affine plane?

  • @julfamily9088
    @julfamily9088 3 роки тому

    I hate this software, better use pen and paper.

    • @DoctrinaMathVideos
      @DoctrinaMathVideos 4 місяці тому

      I've observed that many students prefer using pen and paper. Using pen or pencil and paper is better when graphing functions by hand. One advantage of this type of LMS is that it provides instant feedback to students.

  • @FetaMonster
    @FetaMonster 3 роки тому

    What a great explanation! Thank you so much for taking the time to make this video!!

  • @Leon-kd2ih
    @Leon-kd2ih 3 роки тому

    This is a great explaination of the Pollard rho! It helped me a lot to understand it.

  • @catfish7982
    @catfish7982 3 роки тому

    How can I write natural numbers as a range?

  • @DilipKumar-ns2kl
    @DilipKumar-ns2kl 3 роки тому

    This can be solved by difference of squares or cubes. But luckily with much ease using the formula for sum of sums any power sum can be calculated .

  • @xxxx-jw1qd
    @xxxx-jw1qd 3 роки тому

    (80/81)/(10/81)=8 ....This is a simpler proof that it approaches 8 as you go off towards infinity. Really enjoy your factorization videos. Look forward to more of your content in the future.

  • @petergikaru5749
    @petergikaru5749 3 роки тому

    Really helpful appreciated

  • @bentupper4614
    @bentupper4614 3 роки тому

    Those are definitely magic card sleeves!

  • @bentupper4614
    @bentupper4614 3 роки тому

    I like 15:50: "Two pretty horrible things happen ..." ! Well done! Good pacing, good pictures, well explained. I found this video by looking for more info on the affine plane after watching Stand-Up Maths recent video about Dobble - the British version of Spot it.

  • @wouterantvelink3269
    @wouterantvelink3269 3 роки тому

    Amazing video!

  • @priyanshukumarpu
    @priyanshukumarpu 3 роки тому

    Found your channel today and i Loved it , let more videos on elliptic curves coming

  • @slaozeren8742
    @slaozeren8742 3 роки тому

    thank you, sir!

  • @noahmelekian200
    @noahmelekian200 3 роки тому

    Best explanation possible to find on UA-cam! Thanks alot!

  • @katiebell1138
    @katiebell1138 4 роки тому

    I like your proof, but I was hoping it would be abstract, than having concrete examples. I worked on this algorithm today and wanted to compare what I have done. For a=bq+r I try to prove that q and r exist such that 0<r<b. I need show that there is only one q and one r for that equation and inequality to work, but uniqueness is harder to prove compared to existence.

  • @tommyocchipinti7683
    @tommyocchipinti7683 4 роки тому

    In the "Making your own cases" example towards the end of this video (around 20:30 in the video) I am proving that if x\in \ZZ then there exists k\in \ZZ such that x^2=4k or x^2=4k+1, but omitted the "squared" in my statement of the problem. Apologies!

  • @ugtakhbayarbattulga7666
    @ugtakhbayarbattulga7666 4 роки тому

    What if u want to find C(100)?

  • @arjunkr3924
    @arjunkr3924 4 роки тому

    Thank you so much.

  • @naveedakram7501
    @naveedakram7501 4 роки тому

    DIG

  • @huebys
    @huebys 4 роки тому

    I'm sorry, could you explain why it's 12 choices and not 7? I didn't quite understand that.

    • @jhlapp9840
      @jhlapp9840 4 роки тому

      Let f: N->X. There are 3 types of functions: invective, surjective, and neither. There are 4 types of equivalence: equality, up to permutation of N, up to permutation in X, and up to permutation in both. 3x4=12

  • @ashlah3566
    @ashlah3566 4 роки тому

    Just found this video after reading the topic on Wikipedia. Nice video! Thanks

  • @abhisekmishra2817
    @abhisekmishra2817 4 роки тому

    hello sir, thank you for a great video.. just wanted a clarification.. In counting, the way we calculate the permutations for n balls (distinct), m places (urns) with replacement is n^m (each urn can be filled in n ways, from books and online videos). But when we employ the twelvefold way, for no restrictions both balls and urns distinct conditions the permutation is shown as m^n (each ball has m ways to go). How so?

  • @prashantd.1847
    @prashantd.1847 4 роки тому

    ANSWER TO YOUR HOMEWORK QUESTION IS COEFFICIENT OF p^4 in the expansion of (1-p)^(-4). I am from india. i loved the way you teach

  • @abhisekmishra2817
    @abhisekmishra2817 4 роки тому

    hello sir, I have a query. the P(n,m) is for the case where n>m, correct? what if n<=m? generally textbooks follow the path that first box can be filled in m ways, second box in m-1 ways and not first object can go to m boxes, second boxes can go to to m-1 boxes.. how to analyse then?

  • @tommyocchipinti7683
    @tommyocchipinti7683 4 роки тому

    Near the end of this video I somehow write down that the derivative of 4 cos(x) is -4 cos(x). It should be -4 sin(x). My bad!

  • @Anteater23
    @Anteater23 4 роки тому

    If I let the sides of a cube be an nxn grid of squares and let there be m visually distinct colours we I can use to colour the squares. Can I let the 6n^2 squares on the outside of the cube be nodes and let the set of symmetries of a cube be the Group. Can I find out number of colourings of the cube using your method?

    • @tommyocchipinti7683
      @tommyocchipinti7683 4 роки тому

      Yes, absolutely!

    • @Anteater23
      @Anteater23 4 роки тому

      Tommy Occhipinti See the formula you’re using for Polyas enumeration theorem, I am seeing lots of different definitions of this theorem on the internet. Some talk about cycle indicators being polynomials and then work out the colourings this way. Is your formula the same thing?

    • @Anteater23
      @Anteater23 4 роки тому

      Tommy Occhipinti Also is there a way I could do my question above in a reasonable amount of time. Would I have to check the orbits of 6n^2 squares under each of the 24 symmetries of a cube?