- 196
- 283 189
Sprache der Zahlen
Germany
Приєднався 18 кві 2020
Moin und willkommen auf meinem Kanal.
Hier entsteht ein Kanal für alle, die sich mit Mathematik beschäftigen müssen bzw. dürfen.
Impressum:
Patrick Neumann
Im Hornkenbusch 36
48432 Rheine
Mail: patrickneumann1980@gmail.com
Hier entsteht ein Kanal für alle, die sich mit Mathematik beschäftigen müssen bzw. dürfen.
Impressum:
Patrick Neumann
Im Hornkenbusch 36
48432 Rheine
Mail: patrickneumann1980@gmail.com
Kopfrechnen - Subtraktion
Heute zeige ich euch verschiedene Möglichkeiten, wie wir im Kopf subtrahieren können. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos!
0:00 Einleitung
0:20 Variante 1
1:38 Variante 2
2:42 "Spezialfall" Differenz
#Kopfrechnen
#KopfrechnenSubtraktion
#KopfrechnenSubtrahieren
0:00 Einleitung
0:20 Variante 1
1:38 Variante 2
2:42 "Spezialfall" Differenz
#Kopfrechnen
#KopfrechnenSubtraktion
#KopfrechnenSubtrahieren
Переглядів: 205
Відео
Kopfrechnen - Addition
Переглядів 165Місяць тому
Heute zeige ich euch verschiedene Möglichkeiten, wie wir im Kopf addieren können. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:24 Beide Summanden zerlegen 2:08 Einen Summanden zerlegen 2:58 Eine Subtraktion einfügen #Kopfrechnen #KopfrechnenAddition #KopfrechnenAddieren
Kopfrechnen (5) - Multiplikation mit 11
Переглядів 423Місяць тому
Heute zeige ich euch, wie wir eine Multiplikation mit einer 11 möglichst einfach im Kopf rechnen können, denn eigentlich müssen wir nur zwei Zahlen addieren Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:15 Erklärung 1:05 Beispiele 1:55 Addition anstatt Multiplikation #Kopfrechnen #KopfrechnenMultiplikation #MultiplikationMit11
Kopfrechnen (4) - Multiplikation mit 9
Переглядів 199Місяць тому
Heute zeige ich euch, wie wir eine Multiplikation mit einer 9 möglichst einfach im Kopf rechnen können. Wir vergleichen es mit dem "klassischen" Weg und rechnen auch mit zwei zweistelligen Zahlen wie "34" mal "29". Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:20 Erklärung 1:00 Vergleich 1:50 Beispiele 2:30 größere Zahlen #Kopf...
Kopfrechnen - Multiplikation (3)
Переглядів 2562 місяці тому
Heute zeige ich euch, wie wir eine Multiplikation mit einer 5 möglichst einfach im Kopf rechnen können. Wir vergleichen es mit dem "klassischen" Weg und rechnen auch mit Zahlen wie "15" und "45". Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:18 klassisch 1:00 Vereinfachung 2:25 Multiplikation mit 15 3:32 Multiplikation mit 45 #...
Pi - experimentell bestimmen
Переглядів 852 місяці тому
Heute zeige ich euch, wie wir mit ganz einfachen Messungen die Zahl Pi (π) experimentell bestimmen können. Ich zeige euch auch, worauf wir beim Messen achten sollen. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:08 Was benötigen wir 0:44 Messungen 5:54 Arithmetisches Mittel 6:15 Ergebnis #Pi #Pibestimmen #PiExperiment
Umfang eines Kreises berechnen
Переглядів 2203 місяці тому
Heute schauen wir uns an, wie wir den Umfang eines Kreises berechnen können. Hierfür haben wir zwei Formeln, je nachdem ob wir mit dem Radius oder dem Durchmesser rechnen wollen. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:08 Formeln 2:00 1.Beispiel 3:11 2.Beispiel 4:17 Formeln umwandeln #Kreisumfang #KreisumfangBerechnen #Fo...
Winkelsätze - Herleitung
Переглядів 1373 місяці тому
Heute leiten wir uns die 4 Winkelsätze her, alles was wir hierfür wissen müssen sind: Ein Kreis hat 360° und die Innenwinkelsumme eines Dreiecks sind 180° Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:11 Nebenwinkelsatz 1:05 Scheitelwinkelsatz 2:06 Stufenwinkelsatz 3:18 Wechselwinkelsatz #WinkelsatzHerleitung #WinkelsätzeHerlei...
Winkelsätze - einfach dargestellt
Переглядів 923 місяці тому
Heute zeige ich euch die 4 Winkelsätze, eigentlich sind diese recht einfach und ich kann sie euch hoffentlich übersichtlich darstellen. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:12 Nebenwinkelsatz 0:44 Scheitelwinkelsatz 1:20 Stufenwinkelsatz 2:04 Wechselwinkelsatz #Winkelsatz #Winkelsätze
Innenwinkelsumme von Vielecken
Переглядів 1213 місяці тому
Heute leiten wir uns gemeinsam eine Formel her, mit der wir die Innenwinkelsumme von beliebigen Vielecken berechnen können Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:25 Am Anfang ist ein Dreieck 1:25 Jedes Viereck besteht aus Dreiecken 2:37 Zusammenhang suchen 3:28 Formel aufstellen 4:05 Beispielrechnung #Vielecke #Innenwink...
Innenwinkelsumme Dreieck - Herleitung
Переглядів 1094 місяці тому
Heute leiten wir uns die Innenwinkelsumme für beliebige Dreiecke her. Alles was wir dafür brauchen sind die Winkelsätze (hier der Wechselwinkelsatz oder Scheitelwinkelsatz und Stufenwinkelsatz). Und wir sollten wissen, dass ein Kreis 360° hat. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:09 Was benötigen wir? 0:40 Vorgehen 2:0...
Herleitung - Euklidischer Algorithmus
Переглядів 904 місяці тому
Heute schauen wir uns an warum der euklidische Algorithmus (klassisch und modern) überhaupt funktioniert. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0: 18 klassisch mit Zahlen 3:23 klassisch mit Variablen 5:28 modern #EuklidischerAlgorithmusHerleitung #EuklidischerAlgorithmus
Moderner euklidischer Algorithmus
Переглядів 1024 місяці тому
Heute zeige ich euch den modernen euklidischen Algorithmus. Dieser baut auf den klassischen euklidischen Algorithmus auf und liefert uns wieder den ggT (größten gemeinsamen Teiler). Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:10 klassischer Algorithmus 1:30 moderner Algorithmus 3:10 2.Beispiel 4:18 3.Beispiel 5:55 4.Beispiel ...
Klassischer euklidischer Algorithmus - einfach erklärt
Переглядів 2844 місяці тому
Heute zeige ich euch, wie wir mit dem klassischen euklidischen Algorithmus, den größten gemeinsamen Teiler von Zwei Zahlen bestimmen können Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:26 1.Beispiel 2:28 2.Beispiel 3:13 3. Beispiel 5:06 Vereinfachung? #EuklidischerAlgorithmus #KlassischerEuklidischerAlgorithmus #GrößterGemeins...
Logarithmus - Kopfrechnen
Переглядів 2875 місяців тому
Heute zeige ich euch, wie wir typische Kopfrechenaufgaben für den Logarithmus lösen können. Hierfür gibt es verschiedene Fälle die wir uns anschauen. Wenn Ihr den Kanal unterstützen wollt, dann teilt, abonniert, kommentiert und liked die Videos! 0:00 Einleitung 0:24 Standard 1:23 Kehrwert 2:28 gemischt 3:17 Wurzel 6:12 weitere Fälle #LogarithmusKopfrechnen #LogarithmusImKopf #logarithmus
Basiswechsel einer Potenz (Logarithmus)
Переглядів 2025 місяців тому
Basiswechsel einer Potenz (Logarithmus)
Logarithmus eingeben im Taschenrechner mit der LOG10-Taste
Переглядів 6446 місяців тому
Logarithmus eingeben im Taschenrechner mit der LOG10-Taste
Logarithmische Schreibweise - einfach erklärt
Переглядів 816 місяців тому
Logarithmische Schreibweise - einfach erklärt
Klammern auflösen (1) - Positive Zahlen
Переглядів 3347 місяців тому
Klammern auflösen (1) - Positive Zahlen
Einmaleins - wirklich viel zu lernen?
Переглядів 3187 місяців тому
Einmaleins - wirklich viel zu lernen?
Multiplikation - Wozu, weshalb, warum?
Переглядів 568 місяців тому
Multiplikation - Wozu, weshalb, warum?
3. binomische Formel - bildliche Darstellung
Переглядів 19210 місяців тому
3. binomische Formel - bildliche Darstellung
2. binomische Formel - bildliche Darstellung
Переглядів 30410 місяців тому
2. binomische Formel - bildliche Darstellung
Danke
Bei der Erklärung einfach zu unterstellen, dass klar sei, dass Minus Mal plus gleich minus sei.......... Ich finde es unwissenschaftlich, so vorzugehen. Richtig wäre doch Frage eins: was ist minus mal plus? Und danach: was ist minus Mal minus.
ohne das Video anzuschauen 73 - 58 = 73 - 50 = 23 - 8 = 15 113 - 72 = 113 - 70 = 43 - 2 = 41 217 - 213 = 7 - 3 = 4 ============================== 1001 - 998 = 1000 - 998 = 2 + 1 = 3 bei 2:30 ist ein Fehler drin 😇😊
Danke für den Hinweis, nur leider kann ich das nicht nachträglich ändern. Der Fehler sollte aber eigentlich, also hoffentlich, nicht zu Problemen führen. Es gibt immer verschiedene Möglichkeiten im Kopf zu rechnen. :)
Wenn man die Malreihen 1,2 und 5 auswendig kann, kann man sich den Rest doch viel (!) einfacher mit dem Distributivgesetz erschließen?
Sehr sehr gutes Video hat mir echt weiter geholfen
Das freut mich!
Ohne das Video zu schauen. 50 + 70 = 120 + 3 = 123 + 8 = 131 400 + 600 = 1000 30 + 80 = 110 + 1000 = 1110 + 7= 1117 + 7 = 1124
Das geht immer, im Video zeige ich aber noch weitere Möglichkeiten um die Rechnung im Kopf zu vereinfachen.
Super erklärt
Vielen Dank!
Interessant darüber hab ich in diesem Detail nie so sehr nachgedacht. Viele Grüße eines Maschinenbau Students der deine Trigonometrie Videos sehe zu schätzen weiß!
Vielen Dank und viel Erfolg im Studium!
Voll gut erklärt danke!!
Danke für das Lob!
Sehr spannend und hiflreich!👍
Das freut mich!
68 versetzt untereinander schreiben und adieren.
Genau, das wäre die kurze schriftliche Variante!
Das Ziegenproblem ist einfach ein Kommunikationsproblem. Denn wenn erst mal eine Tür geöffnet ist und der Moderator DANN fragt ob wechseln oder nicht, dann hat man tatsächlich 50%!!!!! Wenn man allerdings unterstellt, die Frage ob wechseln oder nicht, würde man schon vorm Öffnen der Tür FINAL entscheiden, dann hat man natürlich 2/3. So ists aber nicht in dem Gameshows.
Nunja. Kopfrechnen mit 11 ist eigentlich ne ganz einfache Addition. X x 11 = X x 10 + X X x 10 braucht man nicht zu rechen. Wie du es erwähnst, man hängt einfach eine NULL hinten ran. Ähnlich ist es ja auch, wenn mit Zahlen die aus identischen Ziffern, größer 1, bestehen multupliziert wird. Man braucht nur einmal mit der Ziffer multiplizieren. 25 x 33 25 x 3 = 75; eine Null hinten ran = 750 + 75 25 x 333 = 7500 + 750 + 75
Das Stimmt, das sage ich ja auch im Video, die Multiplikaton mit 11 ist eigentlich nur eine Addition. Gute Ergänzung mit "33" usw. Danke!
@@SprachederZahlen "Das Stimmt, das sage ich ja auch im Video, die Multiplikaton mit 11 ist eigentlich nur eine Addition." Ich hatte en ersten Satz schon geschrieben, bevor ich mir das Video angeschaut habe. 😉
❤❤
Ein sehr gutes Video. Vielen Dank.
Thanks
richtig gut erklärt, heilig's Blechle!
Vielen Vielen Dank, ich studiere gerade Informatik und hab echt Probleme mit einigen grundlegenden Rechenregeln in meinem zweiten Mathe Modul. Das lag vorallem an sehr schlechtem Mathe Unrerricht in der Grundschule und Oberstufe. Dein Video hat das so unglaublich verständlich erklärt und hat direkt eine Lücke gefüllt!!!!!! :D
Gern geschehen und viel Erfolg im Studium!
Vielen Dank für Ihre souveräne Pädagogik! Ich hatte nämlich in einem Matheproblem, wo der Ausdruck vorkam ( ua-cam.com/video/2v3ysmLaJoY/v-deo.html) und nicht näher erklärt wurde, Verständnis-Schwierigkeiten.
Das freut mich!
Ein tolles Video. Wunderbar erklärt. Danke.
Vielen Dank!
Danke.ich kann meine Kinder jetzt erklaeren.
Das freut mich!
Genial! Ich lerne gerade für den DLR Test, bei welchem man auch sehr schnell kopfrechnen können muss. Vielen Dank! Sehr hilfreiches Video!
Gern geschehen, viel Erfolg!
Super
Ich verstehe es nicht, sorry. Die Erklärung verstehe ich natürlich schon aber nicht, warum die Berechnung überhaupt so ausgeführt wird. Meine erste Wahl triggert doch nur die Eliminierung einer der zwei falschen Möglichkeiten. Diese Eliminierung tritt mit einer Wahrscheinlichkeit von 1 ein, unabhängig von der Wahl. Somit wäre der erste Schritt nur eine Veränderung der Problemstellung, die in jedem Fall eintritt. Und damit wäre es von Anfang nur eine Wahl zwischen zwei Türen, da die Elimierung einer der falschen Möglichkeiten sicher eintritt. Der erste Schritt dürfte dann in die Berechnung überhaupt nicht einfließen, da er stochastisch gar nicht relevant ist. Beispiel: Ich hätte bei Schritt eins auch die Option nichts zu wählen. Dann wird die Ziegentür geöffnet. Und dann wäre klar, dass es eine Wahrscheinlichkeit von 1/2 ist das Auto zu treffen. Inwiefern verändert sich die tatsächliche Wahrscheinlichkeit für den Gewinn, wenn ich eine irrelevante Wahl treffe? Ob ich wähle oder nicht, es ergibt sich die neue Problemstellung mit 1/2. Klar, auf die Idee sind sicher schon viele andere gekommen. Aber ich verstehe eben nicht, wo der Fehler in dem Gedankengang ist. Kann mir da jemand helfen?
Es liegt daran, wann wir uns entscheiden. Beispiel Lotterie: Es gibt 1000 Lose/1 Gewinn und wir haben 1 Los. Die Wahrscheinlichkeit das Richtige zu haben ist 1/1000. Wenn die Auslosung uns aber erst die 999 Nieten zeigt, ändert das nicht unsere Gewinnwahrscheinlichkeit. Das ist hier ähnlich mit den Türen, nur weil uns eine Ziege gezeigt wird, ändert sich unsere Anfangswahrscheinlichkeit ja nicht, das passiert nur wenn wir Wechseln. Bei der Fragestellung wird angenommen, das wir uns auch am Anfang für eine Tür entscheiden müssen. Aber auch wenn nicht: Es gibt 3 Möglichkeiten: Ich wähle eine Tür, die Wahrscheinlichkeit ist 1/3, ich bleibe bei der Tür und egal ob was geöffnet wird oder nicht, die Wahrscheinlichkeit ändert sich nicht. Ich wähle keine Tür, eine falsche wird geöffnet und ich entscheide mich jetzt, dann ist die Wahrscheinlichkeit 1/2. Ich wähle eine Tür, die Wahrscheinlickeit ist 1/3, eine verkehrte wird geöffnet, dann führt ein Wechsel zu einer 2/3 Wahrscheinlichkeit (lange Erklärung im Video)
@@SprachederZahlen Ok, ich glaube jetzt habe ich es verstanden. Ich habe die eingeschränkte Wahlmöglichkeit des Moderators beim zweiten Zug nicht berücksichtigt, oder? Vielen Dank für die Erklärung! 😊
Vielleicht stellst du dir die Anordnung mal mit 100 Türen vor, von denen nach deiner Wahl 98 mit Ziegen geöffnet werden. Nur deine erste Wahl und eine weitere verschlossene Tür bleiben übrig. Und immer dran denken, dass der Moderator weiß, wo das Auto steht. Dämmert's? 😊
@@SprachederZahlen Thx
Trotzdem seh ich in dem letzten Term ein falsches ERGEBNIS da steht 946- 723und das soll gleich minus 224 sein aber 946 steht doch positiv da
Die 947 ist positiv da wir das Minus ausgeklammert haben. Deswegen taucht das Minus wieder im Ergebnis auf.
Vielen Dank
FunFact: Man muss im Staatsexamen Medizin Kopfrechnen können, weil die Epidemiologie Fragen ohne Taschenrechner gelöst werden müssen. Es werden gerade diverse Bretter vor dem Kopf einer nicht gerade mathematischen Person abgebaut. Dankeschön!
Vielen Dank
Ich danke ihnen vielmals
Man könnte noch erwähnen, daß man bei dem Verfahren jederzeit auf eine normale Division umschwenken kann, wenn man nicht mehr durch immer längere Zahlen dividieren will. Das Ergebnis ist dann nicht mehr exakt, aber man bekommt nochmal ungefähr soviele richtige Stellen dazu, wie man schon hat. Die ersten paar Stellen lassen sich ja recht schnell berechnen, aber mit jeder neuen Stelle wird auch die Zahl, durch die man dividiert, immer um eine Stelle länger, und das ganze wird immer unhandlicher. Da bietet es sich an, den Divisor irgendwann mal einzufrieren und einfach als normale Division weiterzurechnen. Beim letzten Beispiel aus dem Video sind schon 5 gültige Stellen bestimmt. Man könnte noch den Rest ausrechnen, 427600-405184=22416. Um jetzt weiterzurechnen, würde man an den Rest zwei Nullen anhängen, die bisher bekannte Wurzel verdoppeln (50656) und dann nach der nächsten Ziffer x suchen, so daß 2241600<=x*50656x. Wenn die Zahl schon so groß ist, spielt es kaum noch eine Rolle, ob ich die Ziffer x anhänge oder einfach eine Null. Der Fehler ist erst in der 6. Stelle. Also ich könnte auch ab hier an den Rest statt 2 Nullen einfach nur noch eine Null anhängen, und dann durch das Doppelte der bisherigen Wurzel teilen, wie bei einer ganz normalen schriftlichen Division. Dann bekomme ich die nächsten Ziffern: 22416/50656= .442514... , also insgesamt steht dann da als Wurzel 253.28442514... Der genaue Wert ist 253.28442510..., also ich habe nochmal 5 richtige Stellen bekommen, bevor sich meine Nachlässigkeit bemerkbar macht. Der Nachteil ist natürlich, daß die 5. Stelle nicht mehr sicher richtig ist, und daß man nicht mehr ohne weiteres sehen kann, wieviele Stellen richtig sind. Immerhin weiß ich, daß die genaue Wurzel nicht größer als meine Näherung ist. Aber mit 5 bekannten Stellen bekommt man mindestens nochmal 4 richtige dazu. Also man kann zur einfachen Division übergehen, nachdem man von der Anzahl der gewünschten Dezimalstellen mehr als die Hälfte erreicht hat.
Vielen Dank, das ist eine sehr schöne Erweiterung!
Wirklich gutes video
Vielen Dank
mega beweis, finde solche geometrischen Beweise sind mega schön :)
Vielen Dank, das finde ich auch!
Danke super Erklärung
Super erklärt, dankeschön
kurze frage der rechte Winkel spielt überall eine super wichtige rolle und ist ja super wichtig, und sin cos tan ist ja nur fürs rechtwinklige Dreiecke definiert. An die Dreiecke die keinen rechten Winkel haben werden die Formeln nicht verwendet und ich wollte fragen wieso? was passiert den wenn man es anwendet? und wieso ist der rechte Winkel so besonders?
Gute Frage! Sin, cos und tan sind als Längenverhältnisse im rechtwinkligen Dreieck definiert. Wir können die Formeln auch erweitern für alle Dreiecke und erhalten dann den Sinussatz ua-cam.com/video/RCvKfU0I928/v-deo.html und Kosinussatz ua-cam.com/video/XP1XDaK72_8/v-deo.html und hier ua-cam.com/video/4pJtcY1BJ_8/v-deo.html habe ich auch ein Video gemacht, warum das rechtwinklige Dreieck so besonders ist! Ich hoffe, ich konnte Dir weiterhelfen.
Sehr gut erklärt🤝🏼
cool habe endlich eine 1 geschrieben
Das freut mich!
danke
Danke, super erklärt. Meine Schulzeit liegt schon etwas zurück,, aber es ist schön, sich das noch einmal zu Gemüte zu führen. 👍
Gern geschehen 😊
Kannst du den Komplementswinkelsatz herleiten? Bist der Einzige der sowas verständlich erklären kann
Danke für das Kompliment. Meinst Du die Herleitung der Winkelsätze mithilfe von komplementwinkeln?
Im rechtwinkligen Dreieck gilt nach nebenstehender Rechnung: sina = cos B. Da a und ß dort Komplementwinkel sind, sich also zu 90° ergänzen, gilt ß = 90° - a, sodass insgesamt sin a = cos (90° - a) folgt. Die zweite Komplementwinkelbeziehung cos a = sin (90° -a) beweist man völlig analog. ☝🏼das steht bei mir als Herleitung aber es ergibt keinen Sinn Kannst du bitte auch den trigonometrischen pythagoras herleiten also wie man darauf kommt
Ah ok, das liegt an der Phasenverschiebung zwischen der Cosinus -und Sinusfunktion. Diese sind um 90° verschoben, so gilt ganz allgemein: cos(x)=sin(x+90°) die Sinusfuntion wird um 90° nach links verschoben und wird zur Cosinusfunktion sin(x)=cos(x−90°) die Cosinusfuntion wird um 90° nach rechts verschoben und wird zur Sinusfunktion Videos zur Cosinus und Sinusfunktion findest du in dieser Playlist: ua-cam.com/video/Uyy8uIdCwQ0/v-deo.html Hier gibt es auch ein Video wo ich den trigonometrischen Pythagoras herleite. Ein Video zur Phasenverschiebung habe ich da aber noch nicht drinnen, hatte ich aber noch vor!
Schöne Alternative zur Primfaktorzerlegung.
Finde ich auch.
Schön. Vor allen Dingen wird der mathemische Hintergrund erklärt. Alles keine Zauberei. DANKE
Das freut mich sehr!
Sekunde 57: log2(128) = 3? - bitte Fehler korrigieren. Ansonsten finde ich das Video super!
Sehr gut erklärt! Beträgt der eingeschlossene Winkel zwischen den beiden Seiten 90°, so ist der Kosinus gleich Null und Pythagoras übernimmt.
Ganz genau!
🎉
Tolles Video Danke 👍
Das ganze funktioniert doch nur mit Zahlen größer als 5, oder irre ich mich? Ich habe es Zuhause versucht mit 5 x7 und komme zu keinem vernünftigen Ergebnis
Ja, das stimmt. Es funktioniert nur bei Multiplikationen von 6 bis 10 Ich habe aber auch ein Video dazu gemacht, wenn wir Zahlen von 5 bis 9 multiplizieren wollen ua-cam.com/video/2I_LXpVW7LM/v-deo.html .
ab 2 min 8 sec: Ist 2 x 3 nicht das Gleiche wie 3 x 2 und nicht wie gesagt dasselbe?
Guter Hinweis, vermutlich habe ich das nicht klar genug ausgedrückt. Das Ergebnis ist in beiden fällen gleich sollte die Botschaft sein!
@@SprachederZahlen das ist schon klar. Mein Hinweis bezog sich auf "das Gleiche" und "dasselbe": 2x3 = (ist gleich) 3x2. Gesagt wurde aber 2x3 ist dasselbe wie 3x2.
Die beste Erklärung von allen.
krank gut erklärt ja