- 547
- 61 271
Banach Center
Poland
Приєднався 18 тра 2021
Stefan Banach International Mathematical Conference Center
Institute of Mathematics of the Polish Academy of Sciences
Institute of Mathematics of the Polish Academy of Sciences
Matematyka ryzyka
Problem ryzyka jest jednym z najważniejszych wyzwań współczesnej nauki. Chcemy rozpoznawać ryzyko naszej działalności, mierzyć je i dalej w konsekwencji próbować wpływać na ryzyko, starając się je zmniejszać. Istotną część wykładu zajmie pomiar ryzyka inwestycji finansowych i ubezpieczeniowych. Wykład będzie nawiązywał do osiągnięć laureatów nagrody Nobla z ekonomii. Zakres tematyki obejmuje metody matematyki finansowej i ubezpieczeniowej oraz zastosowań teorii sterowania stochastycznego przedstawionych w sposób
popularny.
Prowadzący:
prof. dr hab. Łukasz Stettner - Instytut Matematyczny Polskiej Akademii Nauk
popularny.
Prowadzący:
prof. dr hab. Łukasz Stettner - Instytut Matematyczny Polskiej Akademii Nauk
Переглядів: 132
Відео
The 1950's: a golden age of harmonic analysis: connections with Calderón-Zygmund theory (part 4)
Переглядів 412 місяці тому
James Wright (University of Edinburgh, UK)
The 1950's: a golden age of harmonic analysis: connections with Calderón-Zygmund theory (part 3)
Переглядів 482 місяці тому
James Wright (University of Edinburgh, UK)
The 1950's: a golden age of harmonic analysis: connections with Calderón-Zygmund theory (part 2)
Переглядів 332 місяці тому
James Wright (University of Edinburgh, UK)
The 1950's: a golden age of harmonic analysis: connections with Calderón-Zygmund theory (part 1)
Переглядів 582 місяці тому
James Wright (University of Edinburgh, UK)
Uniform bounds for multilinear singular integrals (part 4)
Переглядів 72 місяці тому
Olli Saari (Universitat Politècnica de Catalunya, Spain)
Uniform bounds for multilinear singular integrals (part 3)
Переглядів 232 місяці тому
Olli Saari (Universitat Politècnica de Catalunya, Spain)
Uniform bounds for multilinear singular integrals (part 2)
Переглядів 172 місяці тому
Olli Saari (Universitat Politècnica de Catalunya, Spain)
Uniform bounds for multilinear singular integrals (part 1)
Переглядів 172 місяці тому
Olli Saari (Universitat Politècnica de Catalunya, Spain)
Time-frequency representations and related topics (part 4)
Переглядів 82 місяці тому
João Pedro Ramos (EPFL , Switzerland)
Time-frequency representations and related topics (part 3)
Переглядів 192 місяці тому
João Pedro Ramos (EPFL , Switzerland)
Time-frequency representations and related topics (part 2)
Переглядів 122 місяці тому
João Pedro Ramos (EPFL , Switzerland)
Time-frequency representations and related topics (part 1)
Переглядів 112 місяці тому
João Pedro Ramos (EPFL , Switzerland)
Pointwise convergence problems in ergodic theory and analysis (part 4)
Переглядів 172 місяці тому
Mariusz Mirek (Rutgers University, USA)
Pointwise convergence problems in ergodic theory and analysis (part 3)
Переглядів 72 місяці тому
Mariusz Mirek (Rutgers University, USA)
Pointwise convergence problems in ergodic theory and analysis (part 2)
Переглядів 92 місяці тому
Pointwise convergence problems in ergodic theory and analysis (part 2)
Pointwise convergence problems in ergodic theory and analysis (part 1)
Переглядів 152 місяці тому
Pointwise convergence problems in ergodic theory and analysis (part 1)
Bourgain's proof of the circular maximal function theorem (part 4)
Переглядів 182 місяці тому
Bourgain's proof of the circular maximal function theorem (part 4)
Bourgain's proof of the circular maximal function theorem (part 3)
Переглядів 132 місяці тому
Bourgain's proof of the circular maximal function theorem (part 3)
Bourgain's proof of the circular maximal function theorem (part 2)
Переглядів 92 місяці тому
Bourgain's proof of the circular maximal function theorem (part 2)
Bourgain's proof of the circular maximal function theorem (part 1)
Переглядів 302 місяці тому
Bourgain's proof of the circular maximal function theorem (part 1)
Diophantine equations and discrete harmonic analysis (part 4)
Переглядів 312 місяці тому
Diophantine equations and discrete harmonic analysis (part 4)
Diophantine equations and discrete harmonic analysis (part 3)
Переглядів 202 місяці тому
Diophantine equations and discrete harmonic analysis (part 3)
Diophantine equations and discrete harmonic analysis (part 2)
Переглядів 512 місяці тому
Diophantine equations and discrete harmonic analysis (part 2)
Diophantine equations and discrete harmonic analysis (part 1)
Переглядів 532 місяці тому
Diophantine equations and discrete harmonic analysis (part 1)
Interesting Mr Mallick
Is W ~ N(0, I) randomly sampled at every training iteration or is it just sampled randomly once at the beginning of the training and then stays fixed at those sampled values?
wow, ravi vakil giving a lecture rare treat
Loved every minute of this lecture!
Starts at 2:39
Absolutely amazing lecture!
If you don't like something, change it. If you can't change it, change your attitude.
The lack of citations on this lecture is suspicious. Shouldn't there be some publication if this guy is at all creditable
Audio is not clear.
This might be an absolute no-brainer for someone in the know: K-theory = Kategory theory given the implicit description referring to functoriality. It would have put me out of my misery early on if this had been made clear from the word get go. The meat can be found starting from 1:04:22 examples. Relation to P-adic and Adelic groups is a revelation!
He passed away recently. I didn't know him well, but he always seemed like such a friendly and positive person. During the difficult times of the lockdown, his lessons helped me to stay motivated and engaged in my studies. He kept a good balance between explaining new topics, answering all individual questions and the big picture. Thanks, Dr. Lutz, may you rest in peace
Zajebisty film i wykładowca 🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥
pogczamp
K-theory, huh, yeah What is it good for? Absolutely nothing, uhh
RIP Dr. Lutz
Rest in peace Dr.Lutz
The general principle of conemporary mathematics, is attach the word "theory" to soemthing. Then you have a career. apparently.
If you think it's easy to be a mathematician and that we just write nonsense, then you are welcome to come join us.
@@newwaveinfantry8362 I am a mathematician, I just happen to understand that developing a career is more-or-less equivalent to the membership part of a social club.
@@clickaccept I don't understand what that means. Are you saying that building a career in pure math or coming up with a new theory is something people do just for clout? If you're a mathematician as you said, that is your career, so does that apply to you as well? If one is going into mathematics as a career, then it is clearly out of one's own passion and skillset. There are far easier things to go into for fame and status than mathematics and the "fame" from doing mathematics isn't even all that, since it's only amongst other mathematicians. Are you saying that new theories are just status symbols?
@@newwaveinfantry8362 You reply repeatedly with "are you saying", always taking the most bizarre interpretation as if you are speaking to an idiot. This means you aren't interested in my view, rather you are interested in starting an argument. I suggest you do something else with your time. Academia is overburdened with midwidts who make a career in the manner I have suggested. One way to spot them, is to see who is attaching the word "theory" to the things they study. Someone who dresses in a uniform, is not always an exemplary officer.
Loved this talk, it was extremely well-scoped. I never really understood how to extend intuition for characters of finite groups to the compact setting, but this made the whole thing very concrete and easy to follow.
You lost me at "Suppose we have an abelian semigroup".
I read this 2 seconds before he said it how odd :D
This lecture is excellent!! Thank you!
This deserves so many more views! Have you set the tags for the video?
[Spoiler for problems] For exercise 4 -- is the suggested simple solution just that the integral over R vanishes for functions in H^1?
This is the best video for an introduction of k-theory that I found, together with math-life-balance was a "juicy" math indeed.
So what is K-theory good for?
@@johnnyq4260 Algebraic topology, algebraic geometry and ring theory.
Thank you
What course is this? What uni?
Hello, this talk was given at the ,,Baby steps beyond the horizon 2023'' organized by Insitute of Mathematics of Polish Academy of Science, University of Warsaw and University of Wroclaw
Cool
Jak ja fan
Thank you Michal Eckstein - very fascinating. No mention of Shahn Majid and how the noncommutative would cancel out the black hole singularity?
Thanks for video.Amazing!
Glad you liked it!
hello Kitty!
It is nice if this view is correct. I do not have the expertise to verify, if this is all true.. I truly hope this all correct. The example given at at 27. minute did not work for x1=2,x2=3,x3=2 . This means if A=[(1+2)/2,(2+1j*3)/2;(2-1j*3)/2,(1-2)/2]; or A=[1,0,0;0,(1+2)/2,(2+1j*3)/2;0,(2-1j*3)/2,(1-2)/2] A is not equal to A*A?
Is he relying on x1^2+x2^2+x3^2=1 perhaps?
Absolutely amazing video!
How does this have so few views?! this is wonderful. Excellent exposition, crystal clear and very inspiring. Thank you very much for sharing!
There are very few people in the world who understand this level of abstract algebra.
great talk, thanks
11:57 lecture starts 12:56 basic definitions 28:43 history of K-theory 44:53 tangent vector field on spheres 58:26 K-theory for C^*-algebras
1:29:30 Call from Sarah.
@@jackozeehakkjuz who is sara
@@اسلامكمال-ح4ض My guess is his wife or daughter, judging by how he speaks to her.
NCG = NonCommutative Geometry
commons.wikimedia.org/wiki/File:Cauliflower_Julia_set_DLD.png
commons.wikimedia.org/wiki/File:Dynamical_plane_with_branched_periodic_external_ray_0_for_map_f(z)_%3D_z*z_%2B_0.35.png
An excellent and inspiring lecture !
What a great lecture! Would recommend as a good starting point for anyone wishing to study K-theory.
Perfect 👌