Machine Learning and Data Science Learning
Machine Learning and Data Science Learning
  • 11
  • 46 008

Відео

Part 10 - Dimensionality Reduction - Principal Component Analysis using Python
Переглядів 7724 роки тому
Dimensionality Reduction - Principal Component Analysis using Python The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 07 - Constructing a Multi-Class Classifier Using Neural Network with Python (Tensorflow Keras)
Переглядів 8 тис.4 роки тому
Constructing Multi-Class Classifier Using Neural Network Part 07 - Constructing a Multi-Class Classifier Using Neural Network with Python (Tensorflow Keras) The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 08 - Constructing a Binary Classifier Using SVM with Python
Переглядів 7144 роки тому
Constructing a Binary Classifier Using SVM with Python The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 09 - Constructing Multi-Class Classifier Using SVM with Python
Переглядів 12 тис.4 роки тому
Part 09 - Constructing Multi-Class Classifier Using SVM with Python The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 06 - Constructing a Binary Classifier Using Neural Network with Python (Tensorflow & Keras)
Переглядів 10 тис.4 роки тому
Constructing Binary Classifier Using Neural Network with Tensorflow / Keras and Python The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 05 - Constructing a Neural Network Models - Regression model with Python (Tensorflow & Keras)
Переглядів 11 тис.4 роки тому
Regression models. 1. Construct a multi-layer neural network model. 2. Tune the hyper-parameters for training a model. 3. Train a model on CPU or GPU. 4. Evaluate a model. 5. Save and load a model. Notes: All of the code in this tutorial implemented in Tensorflow 2.1.0. The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 04 - Logistic Regression with Python
Переглядів 3504 роки тому
Module 05 - Logistice Regression - Python The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 03 - Linear Regression with Python
Переглядів 4444 роки тому
Linear Regression - Python one variable and multiple variables using SKLearn package. The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 02 - Python Quick Tutorial - Pandas and Data preprocessing
Переглядів 7634 роки тому
Module03 - Python Tutorial - pandas and data preprocessing The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat
Part 01 - Anaconda and Python for Machine Learning.
Переглядів 1,5 тис.4 роки тому
This video is a tutorial on installing and managing Anaconda. It also includes a quick Python Tutorial. It is the first step to writing your machine learning code and models. The source code is available here: github.com/zhailat/Introduction-to-machine-learning-Python Zeyad Hailat

КОМЕНТАРІ

  • @Dheeraj-hv7vi
    @Dheeraj-hv7vi Місяць тому

    continue making videos

  • @mitajanaiitm
    @mitajanaiitm 3 місяці тому

    while running the code I am getting all loss values as NaN, filepath I have mentioned as suggested in runtime checkpoint_path = '/tmp/ckpt/checkpoint.model.keras.weights.h5'

  • @vedikaadhiman388
    @vedikaadhiman388 5 місяців тому

    Thank you for this explanatory tutorial. I have also followed the same code for building ANN model on regression data having 4 input variables and 1 output variable and the model is built successfully. But now, I want to optimize the ANN model's solutions by Genetic Algorithm (GA). So, for this I am following "ua-cam.com/video/ljjfrrHlxCw/v-deo.htmlsi=-DBs2Bki0p1LgABm", this tutorial as a reference but, they have used Random Classifier in place of ANN model to optimize their regression data. So, at their 19th step, they are calling their trained model into a new variable which is used later as a "fitness function" for GA. I am using "model_full = ann_viz(model, view=False, filename= 'network.gv', title='My Neural Network')" instead of their Rnadomforest classifier. So, please help me in this as I am getting error in "input_shape" i.e., "AttributeError: 'Dense' object has no attribute 'input_shape'". Although I have changed the input_shape as mentioned by you while building ANN modelto "4" as I have 4 variables.

  • @bangjaggi-ov1tn
    @bangjaggi-ov1tn 6 місяців тому

    thank you such amazing tutorial

  • @MOUADKARMOUN-q2p
    @MOUADKARMOUN-q2p 11 місяців тому

    hello i have a problem when i run the code with same data that you give, i got NaN value for loss mae mse mape val_loss val_mae val_mse val_mape

  • @mayalestari2764
    @mayalestari2764 Рік тому

    Thanks

  • @karapureddyjaswanthreddy6053

    This is one of the best lectures on this topic. Great work.

  • @curosaquila9995
    @curosaquila9995 Рік тому

    My jupyter code on line 2 pd.read_csv('iris_dataset.csv') error "FileNotFoundError". what yould i do?

  • @pramishprakash
    @pramishprakash Рік тому

    very helpful sir

  • @MS-du9jj
    @MS-du9jj Рік тому

    What if configuration are given : input data features 20, Hidden layer 1 - 10 neurons. How can we load this data ? Code or syntax

  • @DoubleMagnet
    @DoubleMagnet 2 роки тому

    Thank you for this. Can you show us how to get the result of a specific input?

  • @CarsNCrew
    @CarsNCrew 2 роки тому

    wow

  • @computergyansagargk
    @computergyansagargk 2 роки тому

    Nice video.

  • @prywatny
    @prywatny 2 роки тому

    Excellent work! Thanks!

  • @ESPjump
    @ESPjump 2 роки тому

    Why did you define your own function for the normalization? Is not it equivalent to the StandardScaler() method from SKLearn?

    • @j220493
      @j220493 2 роки тому

      Yes it is but he wanted to transform data as the old way

  • @OriginalPhilip
    @OriginalPhilip 2 роки тому

    can model.fit() be used on multiple datasets. For example, model.fit(normed_training_data1, train_labels1) model.fit(nromed_training_data2, train_labels 2) y_pred = model.predict(normed_test_data) I have 2 datasets that I want to train for the model

  • @arashhosseini1073
    @arashhosseini1073 2 роки тому

    Thank you for the video; most places, including sklearn, show (X_train, X_test, y_train, y_test = train_test_split), why does your model have only two of them? is it because you separate the validation, or does it have any other reason?

  • @khushijain8146
    @khushijain8146 3 роки тому

    Great video! Can you please provide the code.

  • @banderallogmany1912
    @banderallogmany1912 3 роки тому

    For lines 20 & 21, what is the benefit of using validation?

  • @prathapkb123
    @prathapkb123 3 роки тому

    Wow... The best hands-on explanation in youtube so far. Good work bro. Thanks a lot. Learnt a lot!!

  • @promithaldar2330
    @promithaldar2330 3 роки тому

    please give the github repo

    • @WahranRai
      @WahranRai 2 роки тому

      Expand description of video

  • @嗨您好-h1r
    @嗨您好-h1r 3 роки тому

    Hello, your video is very good! But may I ask a question? Is this multi-class classifier is using OVO(One vs. One) or OVA(One vs. All) or RCC?

  • @LLFRA
    @LLFRA 3 роки тому

    so no one-hot encoding is needed?

    • @hggaming911
      @hggaming911 3 роки тому

      If all data types in your dataset are integer or float so no need to use any encoding. Encoding is used for transfering your non-numircal data to numerical values because the model can work only with numbers.

    • @beautyisinmind2163
      @beautyisinmind2163 3 роки тому

      @@hggaming911 if i want to change the order, what is the code for example "Iris-setosa" = 3, "Iris-versicolor"=2, Iris-virginica" =1 instead of writing "Iris-setosa" = 1, "Iris-versicolor"=2, Iris-virginica" =3

  • @kccchiu
    @kccchiu 3 роки тому

    Nice video. I followed your tutorial and it worked brilliantly on my project. On thing at the end, did you made a mistake on the confusion matrix? it seems like you are plotting predicted results against predicted results.

    • @嗨您好-h1r
      @嗨您好-h1r 3 роки тому

      yeah, i think he made a mistake on the confusion matrix, and i correct it into "cm = confusion_matrix(test_labels, y_pred)" but i'am not really sure that is correct. XD

  • @melissa1343
    @melissa1343 3 роки тому

    thank you, im wondering if we can get the code for this in github or something ?

  • @rahul2904
    @rahul2904 3 роки тому

    Great Video! Please share tutorial on Github and share the link in description. Thanks

  • @sehrishkhan8820
    @sehrishkhan8820 3 роки тому

    can you upload videos for Alex Net for multi class in python

  • @sabrinahuda7308
    @sabrinahuda7308 4 роки тому

    can this be apply for multi-label classification too? if yes, where is the part i can change the algorithm to multi-label ?

  • @ssophia3829
    @ssophia3829 4 роки тому

    Thanks for very good video , may I know, where to get the script and also dataset? Do you provide that or available somewhere. Thanks sir

  • @josefranco48
    @josefranco48 4 роки тому

    Good video! Help me a lot. Pleaseeee keep doing them

  • @TheMindOfGregory
    @TheMindOfGregory 4 роки тому

    Great video. Thank you.

  • @muntahairfan551
    @muntahairfan551 4 роки тому

    can i have the code

  • @leventoz1408
    @leventoz1408 4 роки тому

    Very nice!!!

  • @melihaslan9509
    @melihaslan9509 4 роки тому

    Amazing! Please continue on giving tutorials for us!