- 405
- 91 136
TECH HIVE
India
Приєднався 1 тра 2019
Welcome to Tech hive, your ultimate destination for comprehensive geospatial training and expertise! 🌎
In-Depth Tutorials: Dive deep into the world of GIS, remote sensing, and spatial analysis with our step-by-step tutorials.
From using popular software like ArcGIS, QGIS, and Google Earth to mastering geospatial data manipulation, we've got you covered.
Data Visualization: Learn the art of transforming raw data into stunning maps and visualizations. We'll guide you through cartographic principles, symbology, and best practices to make your maps both informative and visually appealing.
GIS Applications: Explore the diverse applications of geospatial technology in various fields. From urban planning and environmental management to disaster response and business intelligence, geospatial skills are in demand across industries.
Geospatial Insights: Stay up-to-date with the latest trends and innovations in the geospatial world. We'll share insights into emerging technologies
In-Depth Tutorials: Dive deep into the world of GIS, remote sensing, and spatial analysis with our step-by-step tutorials.
From using popular software like ArcGIS, QGIS, and Google Earth to mastering geospatial data manipulation, we've got you covered.
Data Visualization: Learn the art of transforming raw data into stunning maps and visualizations. We'll guide you through cartographic principles, symbology, and best practices to make your maps both informative and visually appealing.
GIS Applications: Explore the diverse applications of geospatial technology in various fields. From urban planning and environmental management to disaster response and business intelligence, geospatial skills are in demand across industries.
Geospatial Insights: Stay up-to-date with the latest trends and innovations in the geospatial world. We'll share insights into emerging technologies
Proximity Analysis With Water And Urban Zones In GEE
Proximity Analysis With Water And Urban Zones In GEE
Google Earth Engine for Water Resources Management
Create a map of Intersecting Paths: A Proximity Analysis of Road and River Crossings
Create a map of Intersecting Paths: A Proximity Analysis of Road and River Crossings
Flooding analysis (uBTM) using Google Earth Engine (GEE) and 3D view on ArcScene (ArcGIS Pro)
Tracking 30 Year Of Water Change Detection & River Course Change Analysis using Google Earth Engine
Virtual Workshop 2021: Session 5 Talk2: Bathymetry and coral/seagrass mapping in Google Earth Engine
Estimating forest biomass and structure from space: new estimates and opportunities and challenges
Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2030)
River Water Level Analysis Using SWOT Data in Google Earth Engine
Terrain Analysis with DEM Data in Google Earth Engine
Surface water area changes using Google Earth Engine
Map and Calculate Multiple Urban Green Space Area with Earth Engine
Water Balance Calculation using Precipitation and Evapotranspiration (ET) on Google Earth Engine
Flood Mapping using Sentinel-1 SAR data in Google Earth Engine || Flood damage assessment using GEE
Flood Area Extraction using Sentinel-1A in Google Earth Engine: A Powerful Tool for Flood Mapping
Big Geospatial Data Analysis with Google Earth Engine || Remote sensing Analysis using GEE
Using GIS to prevent Urban pollution
Flood Mapping Google Earth Engine Using Sentinel SAR Satellite Imagery
Analyzing Urban Growth and Its Impact on Air Quality with MODIS Data in Google Earth Engine
LST Temporal Analysis Using Google Earth Engine | Learn How to Analyze Land Surface Temperature #gee
Water Resource Management using Google Earth Engine || Flood Mapping and Water Logging detection
4th day's Google Earth Engine online training for remote sensing analysis || GEE online training
GEE Clip #41 - How to develop and Earth Engine app for mapping surface water dynamics
LST, Urban Heat Island Effect, and UTFVI Analysis using Google Earth Engine and Landsat dataset
Water Quality Monitoring Using Google Earth Engine
Tiber River | Rome, Italy Mapping techniques #urbandesign #actofmapping #mapping #urbanismo
Resource Management GIS Proximity Analysis: Understanding Spatial Relationships #GIS #Resource #map
Flood Impact Assessment Using Sentinel-1 | Preprocessing and Flood Extent Analysis | GEE | Tutorial
How to make change detection using Google Earth Engine || Flood mapping using SAR-1 data in GEE
GEE Web Application for monitoring Water's TSS, Chlorophyll & Turbidity using Remote Sensing in GEE
Water Quality Monitoring using Remote sensing techniques GEE web Application || GEE Web Application
Highlight: Sustainable urban analysis with OpenStreetMap, Python, and geopandas
Correlation analysis of NDBI and NDVI with Surface Urban Heat Island Using Google Earth Engine
How Do Green Infrastructure Projects Impact Stormwater Capture in Urban Environments?
Discussion on queries and future prospects of GIS Science
Water Quality Monitoring using Remote sensing with machine learning algorithm in Google Earth Engine
Spatio-Temporal Analysis of Water Chlorophyll Concentration using MODIS Data in Google Earth Engine
Water Quality Monitoring using Remote sensing in Google Earth Engine || Water Quality analysis
GIS Technology - A Bright Future for Irrigation Design
Geo for Good Lightning Talks Series #4: Crisis Response
Applications of Google Earth Engine for Urban and Regional Studies | Webinar
Water Quality Monitoring using Remote Sensing Techniques in Google Earth Engine || TSS , Turbidity
i Spatial Analysis Functionality and Tools
Terrain Analysis with DEM Digital Elevation model Data in Google Earth Engine
Urban Sprawl Analysis Using GIS Exploring Spatial Growth and Impacts
Forest Fire Susceptibility Assessment Using Google Earth Engine || Forest Risk Assessment
Water quality mapping and monitoring app using GEE
1st days online training program on Google Earth Engine for remote sensing Analysis
Monitoring Surface Water Area Changes Using the Google Earth Engine || Surface Water mapping in GEE
Google Earth Engine for Water Resources Management- Surface water mapping using sentinel imagery
Calculate Land Surface Temperature Using Google Earth Engine || Time Series Analysis || MODIS || LST
Compare Layers Using Split Panel in Google Earth Engine
Script Link: drive.google.com/file/d/146X6igbYMRsaF304uqDR1znAce_zNEAS/view?usp=sharing
Google Earth Engine for Water Resources Management
Create a map of Intersecting Paths: A Proximity Analysis of Road and River Crossings
Create a map of Intersecting Paths: A Proximity Analysis of Road and River Crossings
Flooding analysis (uBTM) using Google Earth Engine (GEE) and 3D view on ArcScene (ArcGIS Pro)
Tracking 30 Year Of Water Change Detection & River Course Change Analysis using Google Earth Engine
Virtual Workshop 2021: Session 5 Talk2: Bathymetry and coral/seagrass mapping in Google Earth Engine
Estimating forest biomass and structure from space: new estimates and opportunities and challenges
Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2030)
River Water Level Analysis Using SWOT Data in Google Earth Engine
Terrain Analysis with DEM Data in Google Earth Engine
Surface water area changes using Google Earth Engine
Map and Calculate Multiple Urban Green Space Area with Earth Engine
Water Balance Calculation using Precipitation and Evapotranspiration (ET) on Google Earth Engine
Flood Mapping using Sentinel-1 SAR data in Google Earth Engine || Flood damage assessment using GEE
Flood Area Extraction using Sentinel-1A in Google Earth Engine: A Powerful Tool for Flood Mapping
Big Geospatial Data Analysis with Google Earth Engine || Remote sensing Analysis using GEE
Using GIS to prevent Urban pollution
Flood Mapping Google Earth Engine Using Sentinel SAR Satellite Imagery
Analyzing Urban Growth and Its Impact on Air Quality with MODIS Data in Google Earth Engine
LST Temporal Analysis Using Google Earth Engine | Learn How to Analyze Land Surface Temperature #gee
Water Resource Management using Google Earth Engine || Flood Mapping and Water Logging detection
4th day's Google Earth Engine online training for remote sensing analysis || GEE online training
GEE Clip #41 - How to develop and Earth Engine app for mapping surface water dynamics
LST, Urban Heat Island Effect, and UTFVI Analysis using Google Earth Engine and Landsat dataset
Water Quality Monitoring Using Google Earth Engine
Tiber River | Rome, Italy Mapping techniques #urbandesign #actofmapping #mapping #urbanismo
Resource Management GIS Proximity Analysis: Understanding Spatial Relationships #GIS #Resource #map
Flood Impact Assessment Using Sentinel-1 | Preprocessing and Flood Extent Analysis | GEE | Tutorial
How to make change detection using Google Earth Engine || Flood mapping using SAR-1 data in GEE
GEE Web Application for monitoring Water's TSS, Chlorophyll & Turbidity using Remote Sensing in GEE
Water Quality Monitoring using Remote sensing techniques GEE web Application || GEE Web Application
Highlight: Sustainable urban analysis with OpenStreetMap, Python, and geopandas
Correlation analysis of NDBI and NDVI with Surface Urban Heat Island Using Google Earth Engine
How Do Green Infrastructure Projects Impact Stormwater Capture in Urban Environments?
Discussion on queries and future prospects of GIS Science
Water Quality Monitoring using Remote sensing with machine learning algorithm in Google Earth Engine
Spatio-Temporal Analysis of Water Chlorophyll Concentration using MODIS Data in Google Earth Engine
Water Quality Monitoring using Remote sensing in Google Earth Engine || Water Quality analysis
GIS Technology - A Bright Future for Irrigation Design
Geo for Good Lightning Talks Series #4: Crisis Response
Applications of Google Earth Engine for Urban and Regional Studies | Webinar
Water Quality Monitoring using Remote Sensing Techniques in Google Earth Engine || TSS , Turbidity
i Spatial Analysis Functionality and Tools
Terrain Analysis with DEM Digital Elevation model Data in Google Earth Engine
Urban Sprawl Analysis Using GIS Exploring Spatial Growth and Impacts
Forest Fire Susceptibility Assessment Using Google Earth Engine || Forest Risk Assessment
Water quality mapping and monitoring app using GEE
1st days online training program on Google Earth Engine for remote sensing Analysis
Monitoring Surface Water Area Changes Using the Google Earth Engine || Surface Water mapping in GEE
Google Earth Engine for Water Resources Management- Surface water mapping using sentinel imagery
Calculate Land Surface Temperature Using Google Earth Engine || Time Series Analysis || MODIS || LST
Compare Layers Using Split Panel in Google Earth Engine
Script Link: drive.google.com/file/d/146X6igbYMRsaF304uqDR1znAce_zNEAS/view?usp=sharing
Переглядів: 146
Відео
Visualizing Traffic And Pollution Impact Using Google Earth Engine
Переглядів 27821 день тому
Visualizing Traffic and Pollution Impact Using Google Earth Engine Monitoring Air pollution using Remote sensing technique in Google Earth Engine | Google Earth Engine Assessing and monitoring the AIR POLLUTION FROM Bushfires in Australia using Google Earth Engine Mapping Climate Change And Air Pollution (Sulfur dioxide) with Satellites | Earth Engine Tutorial Mapping Climate Change and Air Pol...
Soil Water Content Mapping Using Google Earth Engine GEE | Beginner's Guide
Переглядів 11228 днів тому
Soil Water Content Mapping Using Google Earth Engine GEE Beginner's Guide Google Earth Engine Applications in Agriculture Google Earth Engine Tutorial-64: Soil Moisture Estimation using Sentinel-1 Extract SMAP (Soil Moisture Active Passive) Soil Moisture Using Google Earth Engine || #TheGISHub Earth Engine: Time Series Analysis of Soil Moisture with SMAP data | Export as CSV Soil pH Map Using G...
Master Rainfall Runoff Modeling in Google Earth Engine Step by Step
Переглядів 25928 днів тому
Master Rainfall Runoff Modeling in Google Earth Engine Step by Step Google Earth Engine for Water Resources Management Google Earth Engine based Rainfall Runoff Model workshop at Pravaaha 2022 | IIT Roorkee Estimating Soil loss in Google Earth Engine | RUSLE Modelling Hydrological Modeling using Google Earth Engine (LSTM) and Long Short Term Memory (LSTM) ML Model How to make Rainfall Map using...
Monthly Median of Potential Natural Vegetation FAPAR PROB V 2014 2017 Satellite Data Analysis
Переглядів 117Місяць тому
Monthly Median of Potential Natural Vegetation FAPAR (PROB-V 2014-2017) | Satellite Data Analysis Eye on Agriculture Today: Comparative Mapping of Vegetative Growth (Part 1) In-depth Look at Satellite ETc and NDVI Analytics and Applications | Jeff Tuel | Sumer Johal Vegetation and Productivity Maps for Problem Areas Detection - EOSDA Crop Monitoring Zoning Feature Webinar 8 - fPAR as a Proxy fo...
Soil Organic Carbon Mapping with Google Earth Engine (GEE) | Beginner's Guide
Переглядів 101Місяць тому
Soil Organic Carbon Mapping with Google Earth Engine (GEE) Linear model to estimate Soil Organic Carbon (SOC) using Google Earth Engine || Soil Organic Carbon #1 soil organic carbon code google earth engine Soil pH Map Using Google Earth Engine And ArcMap Soil Analysis Remote Sensing Comprehensive Tutorial MEASURING CARBON STORAGE FROM SPACE using Google earth engine || Using Remote sensing tec...
Mastering Supervised Classification of Landsat 8 Data in GEE
Переглядів 112Місяць тому
Mastering Supervised Classification of Landsat 8 Data in GEE Supervised Classification of Landsat 8 imagery in Google Earth Engine | Part 1 Supervised classification in Google Earth Engine | Landsat 8 image Supervised Classification for Land Cover Mapping with Landsat 8 in Google Earth Engine Supervised Classification of Landsat 8 imagery in Google Earth Engine | Part 2 Supervised Classificatio...
How to Downscale MODIS Land Cover Data Using Google Earth Engine
Переглядів 116Місяць тому
How to Downscale MODIS Land Cover Data Using Google Earth Engine Google Earth Engine 33: Load & Export MODIS Land Cover Data | Land Cover Downscaling Landcover Data using Machine Learning (ML) Approach in Google Earth Engine Google Earth Engine Tutorial-49: MODIS LST Downscaling, From 1000 to 100m Google Earth Engine 34: Load & Export NLCD Land Cover Data | United States | Land Cover Google Ear...
Heat wave Impact Mapping with Google Earth Engine (Full Guide)
Переглядів 128Місяць тому
Heatwave Impact Mapping with Google Earth Engine (Full Guide) Beginners Guide to Google Earth Engine (GEE) Geo for Good 2022: Earth Engine Map Visualization Techniques LST, Urban Heat Island Effect, and UTFVI Analysis using Google Earth Engine and Landsat dataset LST and Urban Heat Island Effect Analysis Google Earth Engine Guide Complete Google Earth Engine for Remote Sensing & GIS analysis fo...
Mapping Malaria Risk With Google Earth Engine For Effective Disease Control
Переглядів 124Місяць тому
Google Earth Engine to Help Predict Spread of Malaria How maps packed with data help scientists fight malaria Post AT6FUI 2016: GIS-based map of malaria risk in El Salvador Google Earth Engine 41: Mapping Global Forest Fire using MODIS Burned Area Drought Mapping with VCI in Google Earth Engine: A Step-by-Step Tutorial Climate Information for Malaria Prevention, Control and Elimination Flood Ma...
Google Earth Engine For Rainfall Predictions Full Walkthrough
Переглядів 225Місяць тому
Google Earth Engine For Rainfall Predictions Full Walkthrough Daily rainfall datasets (CHIRPS) in Google earth engine (GEE) Predicting LST with Population, Rain, and Elevation using Random Forest Regression in Earth Engine Monitoring Bioclimatic variables Precipitation seasonality using Google Earth Engine || GEE Download Climate Data (Rainfall) from 1981 - 2022 using Earth Engine API Google Ea...
Google Earth Engine Tutorial Calculate ET, LE, PET & PLE for Evapotranspiration & Heat Flux
Переглядів 276Місяць тому
Google Earth Engine Tutorial Calculate ET, LE, PET & PLE for Evapotranspiration & Heat Flux Estimate Evapotranspiration (ET) with MODIS data | Timeseries Analysis in Google Earth Engine Evapotranspiration and Crop Water Stress Monitoring Using MODIS Dataset in Google Earth Engine Introduction to the course Development of Evapotranspiration SEBAL model in Google Earth Engine How to use Earth Eng...
SO2 Hotspots in High Population Regions A GEE Analysis
Переглядів 92Місяць тому
SO2 Hotspots in High Population Regions A GEE Analysis SO2 hotspots analysis sulfur dioxide pollution high population regions SO2 Google Earth Engine SO2 air pollution analysis GEE air quality mapping sulfur dioxide environmental study urban air pollution hotspots SO2 data visualization satellite data for pollution analysis SO2 Sulfur Dioxide Pollution Hotspots High Population Regions Air Quali...
Prediction Of Land Use / Land Cover Change Using QGIS and ArcGIS (2010- 2020- 2030)
Переглядів 245Місяць тому
Prediction Of Land Use / Land Cover Change Using QGIS and ArcGIS (2010- 2020- 2030) Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2030) Prediction of Land Use Land Cover Change using QGIS and ArcGIS 2010 2020 2030 Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2030) Prediction of Land Use/Land Cover Change using QGIS and ArcGIS (2010-2020-2...
How To Do Buffer In QGIS
Переглядів 51Місяць тому
How to do Buffer in QGIS? 10-Buffers on QGIS (how to make buffer zone around point, line, polygon vector) How to Create Point Buffer in QGIS How to buffer things in QGIS QGIS Tutorials 33: How to create fixed buffer in QGIS | Beginners | QGIS 3.22 QGIS Tutorial - Create Buffers and Select/Identify Features within Buffers QGIS Tutorials 34: How to create Multiple buffer zones in QGIS | Beginners...
Land Scan Global 1 Km Population Data Accurate Mapping for Analytics
Переглядів 2202 місяці тому
Land Scan Global 1 Km Population Data Accurate Mapping for Analytics
How to Visualize and Analyze Building Heights with Google Earth Engine
Переглядів 1992 місяці тому
How to Visualize and Analyze Building Heights with Google Earth Engine
LST and Urban Heat Island Effect Analysis Google Earth Engine Guide
Переглядів 3122 місяці тому
LST and Urban Heat Island Effect Analysis Google Earth Engine Guide
Visualizing Urban Night Light Intensity with Google Earth Engine A Complete Guide
Переглядів 1222 місяці тому
Visualizing Urban Night Light Intensity with Google Earth Engine A Complete Guide
Gridded GEDI Vegetation Structure Metrics and Biomass Density at Multiple Resolutions
Переглядів 1212 місяці тому
Gridded GEDI Vegetation Structure Metrics and Biomass Density at Multiple Resolutions
USFS Forest Mapping Redefined With Google Earth Engine Tools
Переглядів 1232 місяці тому
USFS Forest Mapping Redefined With Google Earth Engine Tools
Analyzing Urban Growth and Its Impact on Air Quality with MODIS Data in Google Earth
Переглядів 2712 місяці тому
Analyzing Urban Growth and Its Impact on Air Quality with MODIS Data in Google Earth
Climate Classification With K Means Clustering Model in Google Earth Engine | | TECH HIVE
Переглядів 2202 місяці тому
Climate Classification With K Means Clustering Model in Google Earth Engine | | TECH HIVE
Google Earth Engine for Beginners Groundwater Recharge Analysis Explained
Переглядів 7882 місяці тому
Google Earth Engine for Beginners Groundwater Recharge Analysis Explained
How to Classify Paddy Fields with Sentinel 1 SAR Data in Google Earth Engine
Переглядів 4422 місяці тому
How to Classify Paddy Fields with Sentinel 1 SAR Data in Google Earth Engine
How to Perform Buffer and Centroid Analysis in Google Earth Engine
Переглядів 1163 місяці тому
How to Perform Buffer and Centroid Analysis in Google Earth Engine
Visualize Global Formaldehyde Levels in Google Earth Engine with Sentinel 5P
Переглядів 1383 місяці тому
Visualize Global Formaldehyde Levels in Google Earth Engine with Sentinel 5P
Estimating Soil loss in Google Earth Engine | RUSLE Modelling
Переглядів 1,8 тис.3 місяці тому
Estimating Soil loss in Google Earth Engine | RUSLE Modelling
Air Quality Analysis Aerosol Optical Depth Mapping with Google Earth Engine
Переглядів 4593 місяці тому
Air Quality Analysis Aerosol Optical Depth Mapping with Google Earth Engine
Master Google Earth Engine Visualizing Land Cover And Temperature Changes
Переглядів 2273 місяці тому
Master Google Earth Engine Visualizing Land Cover And Temperature Changes
The code please 🎉
can i get the code sir?
check it with description
HOW TO DOWNLOAD THE PRECIPITATION ?
Climate Data Online (CDO) provides free access to NCDC's archive of global historical weather and climate data in addition to station history information.
@ thank you. I am doing a project. Can you give me your contact. I have a small doubt
my email rajamanickamgis2019@gmail.com
sure
I have taken the data set for slope and elevation raster but for the thickness of sand, I have no clue. can you help me that?
You may need to mosaic the elevation data together prior to running the slope calculation if the area you are looking at is larger than a single
Are you using soilgrids?
yes
good
Thanks
great video thanks.. Also make a video on forest fire risk assessment using forest type, slope, aspect, precipitation and land surface temperature as factors.
Thanks
So want the script
check it in channel description
Good joob
Thanks
sir kindly share code
// Load the Tamil Nadu boundary var tamilNadu = ee.FeatureCollection('FAO/GAUL_SIMPLIFIED_500m/2015/level1') .filter(ee.Filter.eq('ADM1_NAME', 'Tamil Nadu')); // Center the map Map.centerObject(tamilNadu, 7); Map.addLayer(tamilNadu, {color: 'red'}, 'Tamil Nadu Boundary'); // Load environmental data // 1. Temperature (MODIS) var temperature = ee.ImageCollection('MODIS/061/MOD11A2') .filterDate('2023-01-01', '2023-12-31') .select('LST_Day_1km') .map(function(image) { return image.multiply(0.02).subtract(273.15) .copyProperties(image, ['system:time_start']); }); var meanTemperature = temperature.mean().clip(tamilNadu); // 2. Precipitation (CHIRPS) var precipitation = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY') .filterDate('2023-01-01', '2023-12-31'); var totalPrecipitation = precipitation.sum().clip(tamilNadu); // 3. Vegetation Index (NDVI from Sentinel-2) var sentinel2 = ee.ImageCollection('COPERNICUS/S2') .filterDate('2023-01-01', '2023-12-31') .filterBounds(tamilNadu) .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) .map(function(image) { var ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI'); return image.addBands(ndvi); }); var meanNDVI = sentinel2.select('NDVI').mean().clip(tamilNadu); // 4. Water Bodies (JRC Global Surface Water) var waterOccurrence = ee.ImageCollection('JRC/GSW1_4/MonthlyHistory') .select('water') // Corrected from 'occurrence' to 'water' .mean() .clip(tamilNadu); // Combine the variables into a single multiband image var predictors = meanTemperature.rename('Temperature') .addBands(totalPrecipitation.rename('Precipitation')) .addBands(meanNDVI.rename('NDVI')) .addBands(waterOccurrence.rename('WaterOccurrence')); // Visualize the environmental layers Map.addLayer(meanTemperature, {min: 20, max: 40, palette: ['blue', 'yellow', 'red']}, 'Mean Temperature'); Map.addLayer(totalPrecipitation, {min: 0, max: 1000, palette: ['white', 'blue']}, 'Total Precipitation'); Map.addLayer(meanNDVI, {min: 0, max: 1, palette: ['brown', 'green']}, 'Mean NDVI'); Map.addLayer(waterOccurrence, {min: 0, max: 100, palette: ['white', 'blue']}, 'Water Occurrence'); // Sample the predictors for training data // Add training points based on known malaria cases or hotspots in Tamil Nadu var malariaCases = ee.FeatureCollection([ ee.Feature(ee.Geometry.Point([78.1198, 11.6643]), {'Malaria': 1}), // Example: Salem ee.Feature(ee.Geometry.Point([78.7047, 10.7905]), {'Malaria': 1}), // Example: Trichy ee.Feature(ee.Geometry.Point([79.1325, 12.9716]), {'Malaria': 1}), // Example: Chennai ee.Feature(ee.Geometry.Point([77.1025, 11.2558]), {'Malaria': 0}), // Example: Coimbatore ee.Feature(ee.Geometry.Point([78.7047, 9.9252]), {'Malaria': 0}) // Example: Madurai ]); // Overlay predictors on malaria cases var trainingData = predictors.sampleRegions({ collection: malariaCases, properties: ['Malaria'], scale: 1000 }); // Train a Random Forest Classifier var classifier = ee.Classifier.smileRandomForest(50).train({ features: trainingData, classProperty: 'Malaria', inputProperties: ['Temperature', 'Precipitation', 'NDVI', 'WaterOccurrence'] }); // Classify the region var malariaRisk = predictors.classify(classifier).rename('MalariaRisk'); // Visualize predicted malaria risk Map.addLayer(malariaRisk, {min: 0, max: 1, palette: ['green', 'red']}, 'Malaria Risk'); // Export predicted malaria risk map Export.image.toDrive({ image: malariaRisk, description: 'TamilNadu_Malaria_Risk_Map', scale: 1000, region: tamilNadu, fileFormat: 'GeoTIFF' });
Hi What analysis must be done to prove that an area is Vulnerable to Climate
Multi criteria analysis
Thank you for your
Thanks
Thanks 👍👍👍
Thanks
why does this error doesnt get solved: SVM Classification - Madurai: Layer error: No valid training data were found.
SVM works best with enough, well-distributed training points. If your training data is sparse or skewed, errors can occur.
Nice tutorial. how to export building footprint data with height?
// Load a building footprint dataset (example: Microsoft or OSM via GEE) var buildingFootprints = ee.FeatureCollection("TIGER/2016/Buildings"); // Load DSM and DTM (example using Copernicus) var dsm = ee.Image("COPERNICUS/DEM/GLO30"); var dtm = ee.Image("USGS/NED"); // Calculate building height (DSM - DTM) var buildingHeight = dsm.subtract(dtm).rename('height'); // Add height to building footprints var buildingsWithHeight = buildingFootprints.map(function(feature) { var height = buildingHeight.reduceRegion({ reducer: ee.Reducer.mean(), geometry: feature.geometry(), scale: 30, }).get('height'); return feature.set('height', height); }); // Export to a CSV Export.table.toDrive({ collection: buildingsWithHeight, description: "Building_Height_Export", fileFormat: "CSV" });
Thank you for the GEE Code
I got this error message Collection.loadTable: Collection asset 'TIGER/2016/Buildings' not found. Please help me in downloading building height google building data . Thanks
@@surbhat The error you’re encountering indicates that the asset ID TIGER/2016/Buildings doesn't exist or is inaccessible in Google Earth Engine. This may be due to an incorrect asset ID or the dataset no longer being available.
Sir can you share the script code??
check it with my video description
thank you for valuable topic please could you share you email would like to contact you have question if possible
Kindly create tutorial to fill the voids
sure
unfortunately this product doesn't support Iran
yes of course
thank you sir
Thanks
👏👏👏
Thanks
Thanks for the breakdown! Just a quick off-topic question: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). How should I go about transferring them to Binance?
In the SafePal app, find your USDT wallet.
With greetings and respect and thanks for your efforts and affection. Please share the code.
// Define the region of interest (Chennai, India) var chennai = ee.FeatureCollection("FAO/GAUL/2015/level2") .filter(ee.Filter.and( ee.Filter.eq('ADM1_NAME', 'Tamil Nadu'), ee.Filter.eq('ADM2_NAME', 'Chennai'), ee.Filter.eq('ADM0_NAME', 'India') )); Map.centerObject(chennai, 10); // Load VIIRS DNB data (Nighttime Lights) for a specific year range (e.g., 2020) var viirsNightLights = ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") .filterBounds(chennai) .filterDate('2020-01-01', '2020-12-31') .select('avg_rad'); // Average radiance // Take the median to reduce noise across multiple months var nightLightsImage = viirsNightLights.median().clip(chennai); // Display the Night Light intensity layer Map.addLayer(nightLightsImage, { min: 0, max: 50, palette: ['black', 'yellow', 'red', 'white'] }, 'Urban Night Lights (2020)'); // Optionally, you can create a time series of night light intensity var startDate = '2015-01-01'; var endDate = '2020-12-31'; var timeSeries = ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") .filterBounds(chennai) .filterDate(startDate, endDate) .select('avg_rad') .map(function(image) { var year = image.date().get('year'); return image.set('year', year); }); // Create a time series chart of night light intensity for Chennai var nightLightChart = ui.Chart.image.seriesByRegion({ imageCollection: timeSeries, band: 'avg_rad', regions: chennai, reducer: ee.Reducer.mean(), scale: 500, seriesProperty: 'year' }) .setOptions({ title: 'Night Light Intensity in Chennai (2015-2020)', vAxis: {title: 'Night Light Intensity (Average Radiance)'}, hAxis: {title: 'Year'}, lineWidth: 2, pointSize: 4 }); print(nightLightChart);
🎉❤❤❤❤❤
Thanks
great 👍
Thanks
Me has sido de gran ayuda con tus videos y tutoriales. Mil y más gracias de mi parte. Te lo agradezco.
i unable to understand your language pls comment in english
Can u please provide the code???
sure
Thanks y so much sir...
Most welcome
did you resample all layers? It is necessary or not?
it is necessary to maintain similar datasets
Commendable work!
THANKING Your praise
You can get time seris forest for each year❤❤❤❤❤😂🎉🎉🎉
yes you can get it with sentinental image
I think , we only have 1 water instead of low medium high water , so if you want to detect water , you must use 1 color for your palette for water , just detecting existing water
You're correct that if we are only detecting existing water, using a single class for water (rather than distinguishing low, medium, or high water levels) simplifies the process. In this case, a single color in the palette for water is appropriate
I don't understand, which area is matter and which area is it matter in gold mineral❤
Gold-rich zones: Areas with high concentrations of gold, usually identified through geological surveys.
Hello. Is it possible to share the code?
Pls Check it with my channel description
Pls Check it with my channel description
I don't believe, oh my god , the code work🎉🎉🎉🎉🎉 😊
Great 👍
I got error for slope layer ???
you have to configure with srtm data
Can you share code , man?❤
Pls Check it with my channel description
Dear sir/madam, Can you share the code please.
Pls Check it with my channel description
Great
THANKS FOR Your SUPPORT
Do you know difference between Index formula and regression formula for calculating pollution? 😂❤
Used to express pollution levels in a standardized, interpretable way, typically as part of an Air Quality Index (AQI) or similar indices. It converts raw pollutant concentrations into a normalized value on a scale (e.g., 0-500).
Three important parameters (RF, ET, and Soil moisture) for agriculture at the same time to monitor GW. Thanks for sharing
So nice of you
Mean Soil Moisture: Layer error: ImageCollection.load: ImageCollection asset 'ESA/CCI/SM/3_2' not found (does not exist or caller does not have access). Combined Recharge and Slope: Layer error: ImageCollection.load: ImageCollection asset 'ESA/CCI/SM/3_2' not found (does not exist or caller does not have access).
1. Verify Dataset Availability The ESA CCI Soil Moisture dataset in GEE is typically available under a different name or version. To confirm: Go to the Google Earth Engine Data Catalog. Search for "ESA CCI Soil Moisture" to check the correct dataset name and path. Common datasets for soil moisture include: ESA/CCI/SM/DAILY/v04.5 ESA/CCI/SM/DAILY/v06.1 2. Update Your Script If the correct dataset is found, update your script to use the proper dataset path. For example: javascript Copy code // Load the ESA CCI Soil Moisture dataset var soilMoisture = ee.ImageCollection('ESA/CCI/SM/DAILY/v06.1'); // Print to verify print(soilMoisture); 3. Check Access Permissions Some datasets in GEE require you to request access. If ESA/CCI/SM/3_2 is a private or beta dataset, you might need to: Contact the dataset owner. Use an alternative publicly available dataset. 4. Alternative Soil Moisture Datasets If the dataset is not available, you can use these alternatives: SMAP (Soil Moisture Active Passive): NASA_USDA/HSL/SMAP10KM_soil_moisture (10km resolution). GLDAS (Global Land Data Assimilation System): NASA/GLDAS/V021/NOAH/G025/T3H for soil moisture at various depths. ERA5-Land: ECMWF/ERA5_LAND/HOURLY for soil moisture estimates. 5. Verify for "Combined Recharge and Slope" Layer If the issue persists for the Recharge and Slope layer, check the dataset name in a similar way. Datasets in GEE may have been updated, renamed, or replaced.
Rice is only usa Canada European union
you can use it global
❤🎉❤❤❤
Thanks
How to access you? Your email, contact?
pls contact me rajamanickammanoharan24@gmail.com
Can you please tell what is the point of of reclassifying ndvi when we already got biomass polygon and how will we get value in g/m2
Consistency in Units (g/m²): NDVI can correlate with biomass density, especially when calibrated with ground-truth data. By establishing a relationship between NDVI values and biomass from sample data, you can extrapolate NDVI values to g/m² using regression or other statistical models
@@techhive.2023 Okay thank you. please make more videos related to ecological work like alpha/beta diversity, landscape metrics, GPP, Canopy height, cover, fires disturbance, historical disturbance etc, if you know, subscribing
THANKING For Your SUGGESTS TOPICS
Good
Thanka
Hi would like to meet and greet for your work connect with ur email id
sure Thanks for watching my video. my email id rajamanickammanoharan24@gmail.com
Amazing work please share your email address
Thanks for watching my video. my email id rajamanickammanoharan24@gmail.com
check it with video description.
Plz fin Lahore Pakistan air quality through google earth engine.
It is available from my code just change gps values of Lahore Pakistan
@techhive.2023 sure sir