NextGen AI Guy
NextGen AI Guy
  • 35
  • 9 957
AI Powered WhiteBoard: Learn How to Build from Scratch.
🎥 AI-Powered Whiteboard Tutorial: From Demo to Code Walkthrough
Welcome to the ultimate guide to building an AI-powered whiteboard using cutting-edge technologies like Python, LangChain, Vision AI, and ChatBot integrations! 🚀
This project showcases tools like Gemini 2.0 Multimodal, llama-3.3-70b-versatile, and Groq, alongside advanced drawing capabilities, making it a one-stop solution for your interactive AI whiteboard needs. Learn how to combine state-of-the-art AI with practical applications in real-time.
🔗 Links Mentioned in the Video:
Groq: groq.com
Gemini AI: aistudio.google.com/app/apikey
Access the GitHub Repository: github.com/NextGenAIGuy/AI-Powered-WhiteBoard
💡 Technologies Covered in this Video:
Python 🐍
LangChain Framework 🌐
Vision AI Model👁️ - Gemini 2.0 Multimodal 🎨
ChatBot LLM model 🤖- llama-3.3-70b-versatile 🦙
Groq 🚀
Chapters:
00:00 Intro
00:26 Demo of AI WhiteBoard
05:40 Python Code Explanation
07:30 ChatBot Code
10:38 Vision AI Code
14:30 User Interface with Tkinter
25:04 How to run this project
🔔 Don't Forget to Subscribe for more exciting tutorials and projects!
📢 Share your feedback and questions in the comments section below.
Let me know if you need additional refinements or links! 😊
Переглядів: 231

Відео

Build One ChatBot for MultiDatabase: CSV, PDFs and Images | Step-by-Step Tutorial
Переглядів 4662 місяці тому
Discover how to build a versatile chatbot that interacts with multiple databases from scratch! 🚀 In this tutorial, you'll learn: How to classify user queries with LLMs to determine if they require database interaction. Integrating CSV files, PDFs in VectorDB, and images in VectorDB into your chatbot. Automating script execution for the relevant database. Whether it's a simple question or a data...
How to Fine-Tune LLama-3.2 Vision language Model on Custom Dataset.
Переглядів 3,5 тис.3 місяці тому
In this detailed tutorial, we walk you through the fine-tuning process for the Llama 3.2 Vision Model on your own dataset. Learn how to prepare your data, configure the model, and optimize performance using GPU. This guide is perfect for developers looking to enhance multimodal AI applications by fine-tuning models for specific tasks. 🚀 Tutorial Highlights: ✔️ Prerequisites for fine-tuning with...
How to Build an AI Fashion Stylist | Step-by-Step Guide Building AI as your fashion Stylist
Переглядів 6274 місяці тому
Discover how to build your own AI fashion stylist in this step-by-step tutorial! This video covers everything you need to know, from concept to implementation, to create an AI assistant that curates personalized outfits and provides style recommendations. Perfect for fashion lovers, developers, or anyone looking to explore the intersection of fashion and AI. We’ll walk through the flow diagram,...
AI Agents Explained: Building and Implementing AI Agents with a Hands-On Project
Переглядів 1824 місяці тому
In this video, we dive into the world of AI Agents, intelligent systems designed to perform tasks autonomously or semi-autonomously. Learn what AI agents are, how they function, and how to create your own AI agent through a practical, hands-on project. We’ll walk you through the key concepts, technologies, and methodologies behind AI agents, and guide you step-by-step in building a functional A...
Securing Large Language Models (LLMs): Constructing Security Layers to Protect Your AI
Переглядів 644 місяці тому
In this video, we explore strategies for securing Large Language Models (LLMs) and ensuring they are protected from various security threats. As LLMs become more integral to applications, securing them against misuse and vulnerabilities is crucial. Learn how to construct effective security layers, implement best practices, and safeguard your LLMs from potential risks. ✨ What You'll Learn: The i...
Prompt Engineering: Techniques and Best Practices for Crafting Effective AI Prompts
Переглядів 864 місяці тому
In this video, we delve into the art and science of Prompt Engineering, a crucial skill for maximizing the performance of AI models. Learn how to design and refine prompts to get the best results from models like GPT, and discover the techniques that can help you craft effective and accurate prompts. We'll cover a range of strategies for prompt engineering, including practical tips, common pitf...
What is LlamaIndex? How to Build Projects with the LlamaIndex Framework - Demo Included
Переглядів 714 місяці тому
In this video, we dive into LlamaIndex, an innovative framework designed for creating and managing AI-driven projects with a focus on efficiency and scalability. Learn how LlamaIndex can simplify complex AI tasks, from indexing data to integrating language models and improving your application's performance. We'll walk you through the core features of LlamaIndex and demonstrate how to build a p...
What is LangChain? How to Build AI Projects with the LangChain Framework - Demo Included
Переглядів 804 місяці тому
In this video, we introduce you to LangChain, a powerful framework designed to simplify the development of AI-driven applications and workflows. Discover how LangChain can streamline the process of building complex AI systems, from integrating language models to managing data and context. We'll guide you through the key features of LangChain and show you how to build a practical project using t...
Building AI Applications with OpenAI and Google Gemini: A Step-by-Step Guide
Переглядів 804 місяці тому
In this video, we guide you through the process of building AI applications using two of the leading technologies: OpenAI and Google Gemini. Discover how to leverage these powerful tools to create intelligent and innovative solutions, from chatbots and virtual assistants to data analysis and more. We cover practical steps for integrating OpenAI’s models for natural language processing and Googl...
Image Generative Models Explained: GANs, VAEs, and Diffusion Models
Переглядів 1774 місяці тому
In this video, we explore the fascinating world of Image Generative Models, which are at the forefront of creating realistic and diverse images using artificial intelligence. We cover three major types of generative models: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Diffusion Models. Learn how each model works, their strengths and weaknesses, and their applicat...
What is Retrieval Augmented Generation? How it works?
Переглядів 724 місяці тому
Get ready to revolutionize your understanding of Artificial Intelligence! In this video, we'll delve into the exciting world of Retrieval-Augmented Generation, a game-changing approach that fuses the power of retrieval-based and generative AI models. Learn how Retrieval-Augmented models can integrate vast amounts of knowledge, human expertise, and interactive feedback to generate new, tailored ...
What is Embedding Models. A Beginner's Guide to Huggingface.
Переглядів 1214 місяці тому
Welcome to our tutorial on embedding models with Huggingface! In this video, we'll be covering the basics of embedding models and how to implement them using Huggingface's popular transformer library. Embedding models are a crucial component in many NLP applications, allowing us to transform text into high-dimensional vectors that can be used for tasks such as classification, regression, and cl...
Run Large Language Models (LLMs) Locally and with Free APIs: A Step-by-Step Guide
Переглядів 564 місяці тому
Are you tired of relying on cloud-based services to run your Large Language Models (LLMs)? Do you want to maintain complete control over your data and models while exploring the capabilities of LLMs? In this tutorial, we'll show you how to run LLMs locally on your machine, using free APIs that provide access to powerful language models. We'll cover: How to install the required dependencies and ...
What is a Large Language Model (LLM)? How It Works Explained!
Переглядів 574 місяці тому
What is a Large Language Model (LLM)? How It Works Explained!
BERT Explained: How It Works, Training & Fine-Tuning for NLP Tasks
Переглядів 1344 місяці тому
BERT Explained: How It Works, Training & Fine-Tuning for NLP Tasks
Understanding Transformers: Self-Attention, Encoders & Decoders, and Multi-Head Attention Explained
Переглядів 804 місяці тому
Understanding Transformers: Self-Attention, Encoders & Decoders, and Multi-Head Attention Explained
GRU Explained: How Gated Recurrent Units Work and Simplify RNNs
Переглядів 454 місяці тому
GRU Explained: How Gated Recurrent Units Work and Simplify RNNs
LSTM Explained: How Long Short-Term Memory Networks Work and Solve RNN Limitations
Переглядів 464 місяці тому
LSTM Explained: How Long Short-Term Memory Networks Work and Solve RNN Limitations
Introduction to RNNs: How Recurrent Neural Networks Work & the Vanishing/Exploding Gradient Problem
Переглядів 734 місяці тому
Introduction to RNNs: How Recurrent Neural Networks Work & the Vanishing/Exploding Gradient Problem
Understanding Language Modeling: Techniques and N-Grams Explained
Переглядів 634 місяці тому
Understanding Language Modeling: Techniques and N-Grams Explained
Introduction to NLP & Word Embeddings: Unlocking the Power of Language in AI
Переглядів 464 місяці тому
Introduction to NLP & Word Embeddings: Unlocking the Power of Language in AI
What is Neural Networks? How They Work, Backpropagation & Gradient Descent Explained.
Переглядів 544 місяці тому
What is Neural Networks? How They Work, Backpropagation & Gradient Descent Explained.
Introduction to Generative AI | A Beginner's Guide
Переглядів 934 місяці тому
Introduction to Generative AI | A Beginner's Guide
Generative AI Complete Course: From Basics to Advanced with Hands-On Projects
Переглядів 3865 місяців тому
Generative AI Complete Course: From Basics to Advanced with Hands-On Projects
Speech-to-Text with Speaker Diarization & Identification | Complete Tutorial
Переглядів 1,2 тис.5 місяців тому
Speech-to-Text with Speaker Diarization & Identification | Complete Tutorial
Advance Methods to Enhance Naive RAG with Langchain and Llamaindex ( Part 2 )
Переглядів 1726 місяців тому
Advance Methods to Enhance Naive RAG with Langchain and Llamaindex ( Part 2 )
Learn How to build Advance RAG Based Project with Langchain & LlamaIndex
Переглядів 2476 місяців тому
Learn How to build Advance RAG Based Project with Langchain & LlamaIndex
Automate Web Searches with AI: DuckDuckGo Search, serpAPI, SerperAPI, and LangChain Tutorial
Переглядів 2146 місяців тому
Automate Web Searches with AI: DuckDuckGo Search, serpAPI, SerperAPI, and LangChain Tutorial
How to Build Face Recognition Attendance System. (WIth Python Project)
Переглядів 5196 місяців тому
How to Build Face Recognition Attendance System. (WIth Python Project)

КОМЕНТАРІ

  • @MahadevBhakt-jb4oz
    @MahadevBhakt-jb4oz 3 дні тому

    Hey very interesting project. What is minimum system requirements to run this project on local machine. Like CPU, GPU, RAM, etc?

    • @nextGenAIGuy490
      @nextGenAIGuy490 20 годин тому

      Hi, Thanks for watching. I have run this project on my laptop which is i5 with 16 gb ram. So minimum system requirement i cant say because i haven't check. But to run it smoothly on gpu which have 16 or 24 gb will be enough i am saying according to whisperx model.

  • @manojyadav-eq3un
    @manojyadav-eq3un 3 дні тому

    👍 nice work!

  • @budsayalaohapensaeng6869
    @budsayalaohapensaeng6869 21 день тому

    I have a question ? when we will fine tuning the model, we don't train whole the model right?. So, if it is like this, what should I do?

    • @nextGenAIGuy490
      @nextGenAIGuy490 18 днів тому

      We only train the last few layers (classification head, projection layers) or task-specific layers are trained or fine-tuned. In Our case as i have explained in video target modules are q_proj, v_proj (query and value projection). You asked what should you do, I am not able to understand. You have to explain your problem statement then i can assist you.

  • @Priya-id5tl
    @Priya-id5tl 22 дні тому

    how to load hugging face images in data folder

    • @nextGenAIGuy490
      @nextGenAIGuy490 22 дні тому

      I have explained in the video. At 06:03 we are using load_data package to load the data from huggingface. In the load_data function we just need to pass the dataset name.

  • @priyanshiranawat7236
    @priyanshiranawat7236 24 дні тому

    This is superb

  • @RohitTalele
    @RohitTalele Місяць тому

    Hi I am trying to run the project but not able to can you help me

    • @nextGenAIGuy490
      @nextGenAIGuy490 Місяць тому

      Sure. What exactly the problem you are facing?

    • @RohitTalele
      @RohitTalele Місяць тому

      @nextGenAIGuy490 hi thanks for replying can you create a new video specifying how to specifically install this system I was having problem with loading the model it is giving none type error. Also there are some errors related to whisperx

    • @RohitTalele
      @RohitTalele Місяць тому

      @nextGenAIGuy490 it would be really helpful if you help me

    • @nextGenAIGuy490
      @nextGenAIGuy490 Місяць тому

      @@RohitTalele Do one thing raise a issue request on github. Or send the error screenshot on email. Its easy to do installation i have mention on github as well. And also i have given the whisperx github link from there you can install. But dont worry lets connect through email or github.

    • @RohitTalele
      @RohitTalele Місяць тому

      ​@@nextGenAIGuy490 Hi I have raised issues on GitHub additionally it would be great if you can share your email so that I could send you a specific error screenshot

  • @tamilselvan3525
    @tamilselvan3525 Місяць тому

    how long will it takes for the whole process?

    • @nextGenAIGuy490
      @nextGenAIGuy490 Місяць тому

      @@tamilselvan3525 I haven't trained completely because of GPU limitation. So i won't be able to answer. I just wanted to share that its possible to train and how to train. But training time is dependent on dataset, hardware(GPU configuration) and no. of epochs you are training for.

    • @tamilselvan3525
      @tamilselvan3525 Місяць тому

      @@nextGenAIGuy490 Okay, thanks.

  • @soulaimanebahi741
    @soulaimanebahi741 2 місяці тому

    thank you for the démonstration. do you think can we fine tune this model on a videos data?

    • @nextGenAIGuy490
      @nextGenAIGuy490 2 місяці тому

      @@soulaimanebahi741 No, We can't.

    • @babusd
      @babusd Місяць тому

      Absolutely wrong ! If you dont know say "dont know" . Dont mislead him , fine tuning over video is possible

    • @nextGenAIGuy490
      @nextGenAIGuy490 Місяць тому

      @@babusd relax bro. Do one thing rather than saying show the proof. During training on llama 3.2 vision model they have used image and text pair. Read the model architecture. And if you know show me where they have written we can Fine-Tune vision model on videos.

  • @feelingmatters.
    @feelingmatters. 2 місяці тому

    Hello, I tried but when ever I asked question related to image or finetuning doc, the decisions were made correct through llm but its not giving the final response in the streamlit app, and in vs code terminal its getting terminated without any error but for 'normal' and 'Grocery' its working fine in app. Could me help me on that?

    • @nextGenAIGuy490
      @nextGenAIGuy490 2 місяці тому

      It should work for other 2 data as well. You can debug the code find out where exactly the error is. Still if you are not able to figure it out. We can connect throught mail. Or you can watch the tutorial again i have explained each and every code.

  • @ecmscapgemini6751
    @ecmscapgemini6751 2 місяці тому

    brother, can u please tell how to setup api key in .env file? There is no such .env in the Github repo and am completely unaware of how to put api key in the file (even though I have the api key).

    • @nextGenAIGuy490
      @nextGenAIGuy490 2 місяці тому

      Sure, So you have a api key. Now just create a file name .env than paste the api key after writing this variable in .env file. GROQ_API_KEY = "paste_your_api_key". and you are ready to use the project. I will add the .env file on github repository you can clone from there also.

  • @rakeshkumarrout2629
    @rakeshkumarrout2629 2 місяці тому

    Hey this is quite informative ,could you make a video on livekit integration with any rag application.with our own frontend?

    • @nextGenAIGuy490
      @nextGenAIGuy490 2 місяці тому

      Sure. I will try to include in my future videos.

    • @rakeshkumarrout2629
      @rakeshkumarrout2629 2 місяці тому

      @nextGenAIGuy490 thank you so much.cant wait more

  • @muhammadimranrafique4778
    @muhammadimranrafique4778 2 місяці тому

    Thank you so much!

  • @SathishR-l5o
    @SathishR-l5o 2 місяці тому

    Errors while executing where to contact

    • @nextGenAIGuy490
      @nextGenAIGuy490 2 місяці тому

      As i have replied on mail. Type in the terminal streamlit run app.py. Also included steps to run this project in readme.md file in github.

  • @manojyadav-eq3un
    @manojyadav-eq3un 2 місяці тому

    Nice explanation

  • @mohammadaqib4275
    @mohammadaqib4275 3 місяці тому

    w e are fine tuning llama .2 vision model but collate functionwas utilising Qwen2. IS it fine to use Qwen model in collate function while fine tuning llama-3.2?

    • @nextGenAIGuy490
      @nextGenAIGuy490 3 місяці тому

      By customizing the collate_fn, we are able to control how the data is prepared. we are using it for batch processing, padding bringing data into format to train the model. Its fine to use it.

    • @taido4883
      @taido4883 14 днів тому

      I highly doubt that this could work. Different models have different chat templates and processing.

  • @georffreyarevalo3067
    @georffreyarevalo3067 3 місяці тому

    Good video, how can I test the model that push to Hugging Face? Could you please share an example.

    • @nextGenAIGuy490
      @nextGenAIGuy490 3 місяці тому

      Thanks. You can use AutoModelForVision2Seq to load your model. You need to pass your model path and use huggingface access token.

  • @ChandanKumar-nr2vm
    @ChandanKumar-nr2vm 3 місяці тому

    Thanks you sir this video help me to understand the this model in very first video

  • @sarithamiryala2819
    @sarithamiryala2819 3 місяці тому

    Nice video

  • @Roxx_E
    @Roxx_E 3 місяці тому

    Hey i want a setup of all the libraries can u provide it?

    • @nextGenAIGuy490
      @nextGenAIGuy490 3 місяці тому

      Hi, The project link is given in the description. I also explained in the video how to run this project.

  • @sarithamiryala2819
    @sarithamiryala2819 4 місяці тому

    Nice

  • @mohanSaimeruva
    @mohanSaimeruva 4 місяці тому

    Sir you are explanation is very nice expecting more content like these upon all emerging technologies thank you ❤

  • @viceva6752
    @viceva6752 4 місяці тому

    Great 👍

  • @deepverma1565
    @deepverma1565 5 місяців тому

    Nice explanation 🔥

  • @jkbullitt8986
    @jkbullitt8986 5 місяців тому

    Excellent work, Vikram🔥 I've finally managed to get this working, but I must point out that the transcription process is extremely slow, at least when using Google Colab. It took 13 minutes to process a mere 3:49 seconds of audio. For reference, I used the 'pyannote/speaker-diarization-3.1' model, which I had hoped would be the latest and most efficient version. I also reduced the Whisper model to 'medium.en' in an attempt to improve processing speed. Interestingly, my initial plan to diarize a one-hour audio file exceeded the time limit for free Colab usage. In contrast, a straightforward Whisper transcription of the same file was completed in just 12 minutes on Colab. Do you have any suggestions on how we might optimize the output speed? I'm keen to explore any potential improvements to make this process more efficient.

    • @nextGenAIGuy490
      @nextGenAIGuy490 5 місяців тому

      Yeah in cpu its quite slow. But if you use better GPU. You will notice the processing speed will decrease drastically. T4 is good but nvidia gpu with 24 gb ram do the great job.

    • @MahadevBhakt-jb4oz
      @MahadevBhakt-jb4oz 3 дні тому

      What is minimum system requirements to run this project on local machine. Like CPU, GPU, RAM, etc?

  • @dheerajkumarsingh4412
    @dheerajkumarsingh4412 5 місяців тому

    Impressive 🔥

  • @deepverma1565
    @deepverma1565 5 місяців тому

    Very nice sir ❤️

  • @ChandanKumar-nr2vm
    @ChandanKumar-nr2vm 5 місяців тому

    Awesome knowledgeable video 👍

  • @ChandanKumar-nr2vm
    @ChandanKumar-nr2vm 6 місяців тому

    Very helpful video ❤

  • @lusk_ai
    @lusk_ai 6 місяців тому

    Dope!

  • @JaiRam-t9r
    @JaiRam-t9r 6 місяців тому

    Vry nyc vidio 👍

  • @ChandanKumar-nr2vm
    @ChandanKumar-nr2vm 6 місяців тому

    Knowledgeable vedio it help me alot

  • @devesh9057
    @devesh9057 6 місяців тому

    Despite not having a tech background I can comprehend this all so easily. Your description as well is pretty informative to start with. keep up the nice work 💪

  • @parmatmaverma6832
    @parmatmaverma6832 6 місяців тому

    👍👍

  • @ChandanKumar-nr2vm
    @ChandanKumar-nr2vm 6 місяців тому

    Informative video

  • @riteshchoudhary62076
    @riteshchoudhary62076 7 місяців тому

    ✅️✅️✅️

  • @dheerajkumarsingh4412
    @dheerajkumarsingh4412 7 місяців тому

    📝👍

  • @ChandanKumar-nr2vm
    @ChandanKumar-nr2vm 7 місяців тому

    ✅✅

  • @manojyadav-eq3un
    @manojyadav-eq3un 7 місяців тому

    Very knowledgeable video sir 🙏🏻