Muhammad Asif Farooq (PhD)
Muhammad Asif Farooq (PhD)
  • 481
  • 453 924
HAM Solution: Example 1
Exploring solutions through the homotopy analysis method offers a unique perspective. This method elegantly bridges the gap between initial guesses and desired solutions. Its iterative nature allows for a refined approximation, capturing intricate details. The flexibility of the homotopy analysis method makes it applicable to a wide range of problems. It provides a powerful tool for understanding complex systems.
#homotopy_Analysis_method
Переглядів: 23

Відео

Research Paper Review 4| Quasilinearization| Subtitles
Переглядів 74День тому
Quasilinearization offers a powerful approach to solving nonlinear differential equations. This method iteratively approximates the solution by solving a sequence of linear equations. Each iteration refines the solution, converging towards the true solution of the nonlinear problem. The process involves linearizing the nonlinear terms around the current approximation. This technique provides an...
Research Paper Review 4 (Part 2)| Construction of TDMA in SFDM| Subtitles
Переглядів 59День тому
The tridiagonal matrix algorithm is a highly efficient method for solving certain systems of linear equations. It leverages the specific structure of a tridiagonal matrix to reduce computational complexity. This algorithm is particularly useful in scientific computing and engineering applications. Its streamlined approach makes it faster than more general matrix solvers for these specific cases...
Research Paper Review 4 | English Subtitles
Переглядів 91День тому
The simplified finite difference method is a powerful numerical technique used to approximate solutions to differential equations. It works by discretizing the continuous domain into a grid of points. The derivatives in the differential equation are then replaced by finite difference approximations, transforming the equation into a system of algebraic equations. This system can be solved numeri...
Homotopy Analysis Method| Lecture 1
Переглядів 1392 дні тому
In this video series we will explore the homotopy analysis method. #homotopy_analysis_method
Solution to Exercise 5.1 | Thomas'Calculus (14th Edition
Переглядів 352 дні тому
In this video we solve Exercise 15.1.
Cubic Elements| FEM| Lecture 13
Переглядів 242 дні тому
Cubic elements offer higher-order accuracy in finite element analysis. They capture complex geometries and stress distributions more effectively than linear elements. This increased accuracy comes at a computational cost, requiring more resources. However, the benefits often outweigh the costs for intricate simulations. Consider cubic elements for your next finite element model for improved pre...
Sec 6.3 : Arc Length | Lecture 63
Переглядів 1921 день тому
Calculating arc length is a fundamental concept in geometry. It allows us to measure the distance along a curved path. This knowledge is applicable to various fields, from engineering to physics. Understanding arc length helps us analyze and design curved structures. Precise calculations of arc length are essential for accurate measurements. #calculus
Sec 6.1: The Washer Method| Lecture 62
Переглядів 1421 день тому
Understanding the washer method opens up a world of possibilities for calculating volumes of revolution. This elegant technique simplifies complex problems into manageable steps. By considering the difference between two rotating areas, we can accurately determine the volume of the resulting solid. Visualizing the "washers" formed during rotation helps solidify the concept and its application. ...
Sec 6.1: The Disk Method| Lecture 61
Переглядів 2621 день тому
The disc method offers an elegant way to determine volumes of solids of revolution. By integrating the area of infinitesimally thin discs, we can accumulate the total volume. Visualizing the solid as a stack of these discs is key to understanding the process. This method is particularly useful when the solid is formed by rotating a curve around an axis. Precise calculations are possible with a ...
Sec 6.1: Method of Slicing| Lecture 60
Переглядів 2321 день тому
Exploring the intricacies of slicing in calculus offers a powerful lens for understanding complex shapes. This method allows mathematicians to dissect volumes into infinitely thin cross-sections. By analyzing these slices, we can reconstruct the whole and determine its properties. This technique proves invaluable for calculating volumes, areas, and other crucial measurements. Slicing opens door...
Sec 5.6: Area Between Curves| Lecture 59
Переглядів 1121 день тому
Sec 5.6: Area Between Curves| Lecture 59
Section 5.6: Substitution for Definite Integral | Lecture 58
Переглядів 421 день тому
Section 5.6: Substitution for Definite Integral | Lecture 58
Section 5.5: Indefinite Integral and the Substitution Method | Lecture 57
Переглядів 221 день тому
Section 5.5: Indefinite Integral and the Substitution Method | Lecture 57
Section 5.4: First Fundamental Theorem of Calculus (Part 3)| Lecture 56
Переглядів 221 день тому
Section 5.4: First Fundamental Theorem of Calculus (Part 3)| Lecture 56
Section 5.4 | First Fundamental Theorem of Calculus (Part 1)| Lecture 55
Переглядів 721 день тому
Section 5.4 | First Fundamental Theorem of Calculus (Part 1)| Lecture 55
Sec 5.4: The Fundamental Theorem of Calculus(Part 1)| Lecture 54
Переглядів 621 день тому
Sec 5.4: The Fundamental Theorem of Calculus(Part 1)| Lecture 54
Section 5.3: The Definite Integral| L 53
Переглядів 1021 день тому
Section 5.3: The Definite Integral| L 53
Section 5.2 : Sigma Notation | Lecture 51
Переглядів 1021 день тому
Section 5.2 : Sigma Notation | Lecture 51
Sec 5.1: Areas and Estimating with Finite Sum | L50
Переглядів 1221 день тому
Sec 5.1: Areas and Estimating with Finite Sum | L50
4.7: Antiderivative | Lecture 49
Переглядів 1921 день тому
4.7: Antiderivative | Lecture 49
Section 4.4: Concavity and Curve Sketching| Lecture 48
Переглядів 2321 день тому
Section 4.4: Concavity and Curve Sketching| Lecture 48
Sect 4.3: Monotonic Functions| Lecture 47
Переглядів 1821 день тому
Sect 4.3: Monotonic Functions| Lecture 47
Section 4.2: Rolle's Theorem| L46
Переглядів 1721 день тому
Section 4.2: Rolle's Theorem| L46
Section 4.1: Extreme Values| L45
Переглядів 1421 день тому
Section 4.1: Extreme Values| L45
Section 3.9: Linearization and Differentials|Lecture 44
Переглядів 1521 день тому
Section 3.9: Linearization and Differentials|Lecture 44
Section 3.7: Implicit Differentiation| Subtitles
Переглядів 728 днів тому
Section 3.7: Implicit Differentiation| Subtitles
Sec 3.6: The Chain Rule | L42| Subtitles
Переглядів 828 днів тому
Sec 3.6: The Chain Rule | L42| Subtitles
Sec 3.5: Trigonometric Functions| Lecture 41
Переглядів 17Місяць тому
Sec 3.5: Trigonometric Functions| Lecture 41
Sec 3.4: The Rate of Change| Lecture 40| Thomas' Calculus (14th Edition)
Переглядів 14Місяць тому
Sec 3.4: The Rate of Change| Lecture 40| Thomas' Calculus (14th Edition)