Alan Norton
Alan Norton
  • 64
  • 205 597
Doubled Rings with Long Branches
This video animates Julia sets of the functions
f(z) = z^2(z+b)(z+c)/(bz+1)(20z+1), with values of b and c chosen so that these Julia sets usually have two Herman rings, one inside the other. These Julia sets are similar to those in the video “Evolving Inner and Outer Rings” on this channel, but these values of c result in long narrow branches containing the inner Herman ring and its preimages. The values of b are near the circle of radius 1, with argument decreasing during the animation from about 95 degrees to about 52 degrees. The values of c are near the circle of radius 20 with argument increasing from about 142 degrees to 168 degrees. The winding numbers of the inner ring decrease from 2/3 to 0.63 during the animation, while the winding numbers of the outer ring increase from 0.19 to 1/3. The values of b and c in these images are calculated using the Mandelbrot sets shown in the video “Rotating Double Rings”. That video illustrates two curves of Herman rings for the function f(z) when |b| = 1. Increasing or decreasing the value of |b| causes the two curves to expand or contract relative to one another, which makes it possible to find a value of b for which the two curves of Herman rings intersect. For each frame of this animation (i.e., each value of arg(b)), a value of |b| is calculated so that the two curves intersect in the c-plane. Where those two curves intersect, the corresponding Julia set has two different Herman rings. The points in the image are colored pink for points iterating to zero, and dark green for points iterating to infinity. Points that iterate to the inner Herman ring (and nearby cycles) are colored brown and points converging to the outer ring (and nearby cycles) are colored turquoise.
Переглядів: 326

Відео

Flagella
Переглядів 2,6 тис.2 місяці тому
This video illustrates Julia sets of the functions f(z) = z^2(z a)/(1 conj(a)z), emphasizing the progression of winding numbers 1/N as N goes from 2 to 40, and arg(a) goes from 90 degrees to 19.9 degrees During the animation |a| starts at 4 and gradually decreases to 3 by the end. For most winding numbers, there is a Herman ring containing the unit circle |z|=1. Whenever the winding number is r...
Collapse of Herman Rings Between Opposing 2-Spirals
Переглядів 1,4 тис.2 місяці тому
This video illustrates Julia sets of the functions f(z) = z^2(az b)/(cz a), with |a| = 1, c real between 4 and 12, and b varying along a curve of Herman rings. Initially c = 4, a = 1, and b is chosen to yield a Herman ring with winding number the golden ratio, .61803… During the animation, c increases to 12, arg(a) increases to 45 degrees, and the winding number approaches 0.5. When the winding...
Pinwheels beside a Mandelbrot set
Переглядів 4632 місяці тому
This video illustrates a planar slice of a portion of the Mandelbrot set of the function f(z) = m z^2(z b)/(z d), with |b-d| small (0.0001), a set which was also seen in the video “Visualization of an Embedded Mandelbrot set” on this channel. This video illustrates the dynamics in 3 complex dimensions of the Mandelbrot set of f(z), using planar images near and parallel to the plane of the class...
Visualization of an Embedded Mandelbrot Set
Переглядів 1,2 тис.3 місяці тому
This video shows how the classic Mandelbrot set fits inside the Mandelbrot set of third-degree rational functions of the form f(z) = m z^2(z b)/(z d). This illustrates the structure of a narrow sliver of the larger Mandelbrot set, nearby the classic Mandelbrot set. Note that when b=d, f(z) is just the standard quadratic polynomial m z^2, which is where the video starts. The video shows what hap...
Periodic Herman Ring Pairs
Переглядів 6514 місяці тому
The music in this video is “Lil Song” by Jack Lamos. This video animates Julia sets of fourth degree rational functions f(z) = x^2(x a)(x c)/(x b)(x d) m. Complex values of a, b, c, d, and m were chosen so that the Julia sets of f(z) have two different Herman rings, and each ring has a cycle of period 2. The values of a, b, c, d and m were chosen in the intersection of two curves of Herman ring...
Evolving Inner and Outer Rings
Переглядів 1,4 тис.6 місяців тому
The music in this video is “Whiny Funk in E Major” by Jack Lamos. This video animates Julia sets of the fourth degree rational functions f(z) = x^2(z b)(z c)/(bz 1)(20z 1), following a curve through the space of complex pairs (b,c). Most of the Julia sets in the video have two different Herman rings: one ring is inside the unit circle and a larger ring encircles the inner ring. Points that iter...
Rotating Double Rings
Переглядів 2,8 тис.10 місяців тому
This video illustrates the Mandelbrot set of the fourth degree rational function f(z) = x^2(z b)(z c)/(bz 1)(20z 1), intersected with the c-plane. This Mandelbrot set shows two different curves of Herman rings, that rotate in opposite directions during the video. Wherever the two curves cross, the corresponding Julia set of f(z) has two Herman rings, one inside the other. The parameter b follow...
Lambda Map for Herman Rings
Переглядів 2,4 тис.10 місяців тому
The lambda map is a variant of the classical Mandelbrot set defined by the quadratic polynomial λz(1-z) This video illustrates the Mandelbrot set of the mapping f(z) = z^2(z b)/(cz 1) to show how the lambda map is approximated by the Mandelbrot set of f(z) when |c| is large. The video shows the Mandelbrot set of f(z) in the b-plane, calculated by iterating the two critical points of f(z). Point...
Wiggly Rings
Переглядів 766Рік тому
This video animates Herman rings of the functions f(z) = z^2(z b)/(1-z conj(b)) During the video, the complex number b follows a curve in the complex plane, following the edge of the Mandelbrot set associated with this function. The winding number of f(z) about the origin varies from about 5/11 to about 1/3. Points in the plane are colored blue if a point iterates to infinity or green if it ite...
Squirmy Critter
Переглядів 3,2 тис.Рік тому
This video animates Herman rings of the functions f(z) = z(z b)(z d)/(1 cz)(1 dz), illustrating the diversity of shapes associated with Herman rings in this space. Here d=0.3, and the complex numbers b and c follow curves of Herman rings in the Mandelbrot set of these functions, with |b| and |c| near 3. Initially the argument of b is about -36 degrees and the argument of c is about -20 degrees....
Millipede Evolution
Переглядів 3,3 тис.Рік тому
This video animates Herman rings of the functions f(z) = z(z a)(z b)/(-1 conj(a)z)(-1 bz), where b=0.2, and the complex number a follows a curve that goes halfway around the origin in the complex plane, with distance from the origin varying between 2.5 to 5. The argument of a varies from 0 to pi during the video, as the winding number about the origin varies from 1/2 to 1, then from 0 to 1/2. P...
Rings Rolling Alongside a Mandelbrot Set
Переглядів 1,6 тис.Рік тому
This video illustrates the Mandelbrot set of the 3rd degree rational functions f(z) = z^2(z a)/(1 conj(a)z) m where the complex number a follows the circle of radius 3.1 about the origin. The video follows a curve of Herman rings that emerges from the cusp of the classic Mandelbrot set and follows alongside the main body of the Mandelbrot set as the winding numbers of the Herman rings increase ...
Rings around a Five-cycle
Переглядів 4,9 тис.Рік тому
The music on this video is "Disco LOL" by Jack Lamos. The video is based on the 4th degree rational function: f(z) = z^2(z b)(z c)/( z 1)(1 conj(c)z) where the complex number c has magnitude 20 and argument about 72 degrees. The value of b varies during the video, following a curve of Herman rings around the inside of a bulb of period-5 points in the Mandelbrot set of these functions. The Mande...
Doubled Herman Rings at a Crossing in a Mandelbrot Set
Переглядів 2,4 тис.Рік тому
This video is based on the 4th degree rational function: f(z) = z^2(z b)(z 22)/( cz 1)(1 22z) where the complex number c has magnitude 1 and argument -39 degrees. The value of b varies during the video, starting and ending with b=conj(c). The Mandelbrot set of these functions is like the Mandelbrot set illustrated in the video “Bubble Crossing” on this channel, with two curves (following Herman...
Tangling Spirals
Переглядів 1,6 тис.Рік тому
Tangling Spirals
Bubble Intersection
Переглядів 3,7 тис.Рік тому
Bubble Intersection
A Visual Medley on a Bird Bodega Song
Переглядів 7 тис.Рік тому
A Visual Medley on a Bird Bodega Song
An Alien Invasion
Переглядів 581Рік тому
An Alien Invasion
Entwining Rings
Переглядів 1,6 тис.Рік тому
Entwining Rings
Endless Rings Filling the Plane
Переглядів 787Рік тому
Endless Rings Filling the Plane
Rocking and Rolling with Mandelbrot
Переглядів 7 тис.Рік тому
Rocking and Rolling with Mandelbrot
Angry Mandelbirds
Переглядів 2,4 тис.Рік тому
Angry Mandelbirds
A Flight Through Spiral Clouds
Переглядів 1,1 тис.Рік тому
A Flight Through Spiral Clouds
A Three to Nine Cycle Herman Ring Transition
Переглядів 1,4 тис.Рік тому
A Three to Nine Cycle Herman Ring Transition
Six-Cycles of Herman Rings
Переглядів 8192 роки тому
Six-Cycles of Herman Rings
Mandelbrot sets of rolling rings in 3-cycles
Переглядів 1,4 тис.2 роки тому
Mandelbrot sets of rolling rings in 3-cycles
Rolling rings in 3-cycles
Переглядів 9662 роки тому
Rolling rings in 3-cycles
Dueling Branches
Переглядів 2 тис.2 роки тому
Dueling Branches
Siegel discs in Herman rings
Переглядів 3,4 тис.2 роки тому
Siegel discs in Herman rings

КОМЕНТАРІ

  • @Frâçtælër
    @Frâçtælër 7 годин тому

    Make a herman ring with the function z^3/(z + b) + c Both b and c are complex constants

  • @Frâçtælër
    @Frâçtælër Місяць тому

    What is the polynomial for the critical points?

    • @VAlanNorton
      @VAlanNorton Місяць тому

      This is a bit complicated. The function is of the form f(x)=x^2(x+a)(x+b)/(cx+1)(dx+1), where a,b,c,and d are complex numbers. The numerator is N(x)=x^2(x+a)(x+b) and the denominator is D(x)=(cx+1)(dx+1). The polynomial you need to solve is the numerator of the derivative of f(x), since the derivative of f(x) vanishes where its numerator vanishes. The numerator of the derivative of the quotient N(x)/D(x) is N'(x)D(x)-D'(x)N(x) where the prime(') indicates a derivative. The polynomial N'(x)D(x)-D'(x)N(x) is the one you want. It is of degree 5, but there is no constant term so you only have to solve a 4th degree polynomial (quartic). I use Ferrari's formula in my program to find the roots.

  • @Frâçtælër
    @Frâçtælër Місяць тому

    How do you generate those overlapping fractals?

    • @VAlanNorton
      @VAlanNorton Місяць тому

      It's actually just one image. Each pixel is colored based on the result of iterating 4 critical points. If the critical points converge to different cycles the pixel is colored according the longest cycle length. That way you see the (smaller) bulbs with longer cycles appearing to be superimposed over the (larger) bulbs with shorter cycles. Does that make sense?

    • @Frâçtælër
      @Frâçtælër Місяць тому

      4 critical points? You mean 4 starting points corresponding to each complex extremum of the function?

    • @VAlanNorton
      @VAlanNorton Місяць тому

      The critical points are the complex numbers where the derivative is zero. They are the roots of a 4th degree polynomial. It is solved at each pixel in the image and those 4 roots are then used as the starting points for 4 iterations.

    • @Frâçtælër
      @Frâçtælër Місяць тому

      ​​@@VAlanNortonThat's what I said. The "complex extremum" I dubbed is a point in the complex plane which has a complex derivative of zero. Anyways you make sense.

  • @stubiePVZ
    @stubiePVZ 2 місяці тому

    i wanna touch it

  • @SeagullSorcerer
    @SeagullSorcerer 2 місяці тому

    This is an accurate depiction of worldbuilding is like

  • @Lcs_png
    @Lcs_png 2 місяці тому

    I thought it was a Minecraft map

  • @goos6248
    @goos6248 2 місяці тому

    Trippy

  • @xore7437
    @xore7437 2 місяці тому

    Is that true?

  • @amelioravictoriadionyssia3323
    @amelioravictoriadionyssia3323 2 місяці тому

    Mathematicians when they discover the Paisley pattern

  • @RubizRizoe
    @RubizRizoe 2 місяці тому

    Muy bueno

  • @richardopolento8394
    @richardopolento8394 2 місяці тому

    mandelbrot but minecraft version??

  • @leiocerayt
    @leiocerayt 2 місяці тому

    I don't wanna touch that

  • @elstuarte
    @elstuarte 2 місяці тому

    I'm enjoying playing count-the-flagella on this one

  • @cloudyfromtpotreal
    @cloudyfromtpotreal 2 місяці тому

    I read thwt as "collapse of human rights"

  • @kittt888
    @kittt888 2 місяці тому

    idk how i got here but this video is both cool and made me feel nauseous

  • @boopbamboozler6593
    @boopbamboozler6593 2 місяці тому

    I have no idea what I just watched but I am so here for it

    • @mdrdprtcl
      @mdrdprtcl 2 місяці тому

      It’s the collapse of Herman rings between opposing 2-spirals 👍

  • @thomasnedry8687
    @thomasnedry8687 2 місяці тому

    this is really cool. does the fractal’s equation change through the video to achieve this?

    • @VAlanNorton
      @VAlanNorton 2 місяці тому

      Yes, the values of a and c change continuously during the video and the value of b is chosen each frame to get the desired rotation. This is discussed a bit in the text.

  • @uuhu76
    @uuhu76 3 місяці тому

    Thank you!

  • @elstuarte
    @elstuarte 3 місяці тому

    Watery and dreamlike...

  • @LegalizeAdulthood
    @LegalizeAdulthood 3 місяці тому

    Is this the same Alan Norton that taught the SIGGRAPH 1991 Fractal Modeling course? My friend and I just purchased a Pixar Image Computer off ebay and I remember that Alan Norton presented some visualization of the cubic connectedness locus rendered on a PIC during that course.

    • @VAlanNorton
      @VAlanNorton 3 місяці тому

      I think so, but I don’t remember anything about the cubic connectedness locus. Was that the course John Hart organized?

  • @ginnungagap9793
    @ginnungagap9793 3 місяці тому

    Mandelava Lamp

  • @removechan10298
    @removechan10298 6 місяців тому

    0:35

  • @miguelcarlotorres3038
    @miguelcarlotorres3038 6 місяців тому

    Mandelbrot?

    • @VAlanNorton
      @VAlanNorton 6 місяців тому

      Not a Mandelbrot set, these are Julia sets, but I used their Mandelbrot set to specify how they change over time.

  • @usurpvision
    @usurpvision 6 місяців тому

    Julia sets are the best kind

  • @burningaltership2901
    @burningaltership2901 8 місяців тому

    It looks like the blue is infecting green

  • @Frâçtælër
    @Frâçtælër 9 місяців тому

    The rest of it is a Siegiel disc

    • @VAlanNorton
      @VAlanNorton 9 місяців тому

      Yes, actually a period-5 cycle of Siegel discs.

  • @CySaturnTVObjectCosmos9344
    @CySaturnTVObjectCosmos9344 9 місяців тому

    Landba

    • @Frâçtælër
      @Frâçtælër 9 місяців тому

      It's actually the Mandelbrot set based on the Herman ring.

  • @bryck7853
    @bryck7853 9 місяців тому

    Are they part of the madelbot or julia set, my understanding is the julia set contains the mandlebrot set?

    • @VAlanNorton
      @VAlanNorton 9 місяців тому

      This is the Mandelbrot set . I want to animate the Julia sets of these functions but that will take some more work.

    • @bryck7853
      @bryck7853 9 місяців тому

      @@VAlanNorton Its great. Can't wait

  • @Bashnuts.
    @Bashnuts. 10 місяців тому

    Math? More like meth.

  • @alierenkaya6548
    @alierenkaya6548 11 місяців тому

    your playing with. the fractal called "lambda"

    • @VAlanNorton
      @VAlanNorton 11 місяців тому

      Right. Maybe I can do something to exploit that similarity.

  • @bernardolucas6730
    @bernardolucas6730 11 місяців тому

    looks like a cell 0:39

  • @burningaltership2901
    @burningaltership2901 Рік тому

    mandelbirds trying to kill the Mandelbrot

  • @altairebusran6494
    @altairebusran6494 Рік тому

    Julia set.

  • @LubovTumchik
    @LubovTumchik Рік тому

    sqworm

  • @Xerknight_she-her
    @Xerknight_she-her Рік тому

    I think I will name it swiggy

  • @G0NNG_official1360
    @G0NNG_official1360 Рік тому

    what if it touches itself?

  • @elstuarte
    @elstuarte Рік тому

    Cool critter!

  • @bernardolucas6730
    @bernardolucas6730 Рік тому

    lmao bro

  • @xa-xr9et
    @xa-xr9et Рік тому

    Beautiful,this will be popular very soon

  • @nhatanhmai620
    @nhatanhmai620 Рік тому

    first

  • @nhatanhmai620
    @nhatanhmai620 Рік тому

    Hmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

  • @LexusIgnle
    @LexusIgnle Рік тому

    Infinity god created universe

  • @giovannylopez212
    @giovannylopez212 Рік тому

    Mandelbrot inside mandelbrot inside mandelbrot inside mandelbrot inside the mandelbrot set

  • @justafanofalphabetlore
    @justafanofalphabetlore Рік тому

    We would like a parasite

  • @theunknownend
    @theunknownend Рік тому

    I WILL QUIT VIDEOS OF REST OF MY LIFEEEEEEEEEEEEE!!!!!!!!!!!!!!!

  • @demostheniscima9010
    @demostheniscima9010 Рік тому

    Promo-SM 😱

  • @gosubbasicallyphilip4779
    @gosubbasicallyphilip4779 Рік тому

    Lol

  • @wesluka6546
    @wesluka6546 Рік тому

    So cool! What's the music? Is it copyright free?

    • @jacklamos426
      @jacklamos426 Рік тому

      Hey, Wes! I made this song and it’s not copyrighted- you’re free to use it if you’d like, just give me a shoutout if you don’t mind 🤘

  • @anguy33
    @anguy33 Рік тому

    .rs..slow

  • @theunknownend
    @theunknownend Рік тому

    Formula: julia set pbs + c^2 x.y relastic break; + c