Arneauxtje
Arneauxtje
  • 111
  • 1 146 098
And yet another planetary gear clock, last one, I promise
Can't believe I didn't think of this setup before; this must be one of the most straightforward and compact drivetrain arrangements for displaying seconds, minutes and hours.
Technically it's not a full-fledged planetary gear since the satellite wheels only run on a planet wheel while not simultaneously on an outer ring wheel, but who cares.
Переглядів: 1 102

Відео

Yet still another planetary gear clock design
Переглядів 1945 місяців тому
This one's rather sneaky. The planet wheels run on a twin set of satellite wheels with a small difference in gear teeth number, but on the same pitch circle, by tweaking the gear module a bit. The static wheel has less teeth than the moving one, and as a result the latter one turns clockwise.
Yet another planetary gear clock design
Переглядів 3156 місяців тому
I consider this to be an improvement on a design made years ago, where the satellite wheels are driven from a center stack of gears. In this case, the yellow satellite wheel drives the green and cyan ones, which makes for a more efficient set-up. As per the previous design, the planetary gears tell the time. The whole assembly can be actuated at the center wheel or any of the two satellite whee...
Another planetary gear clock design
Переглядів 2577 місяців тому
Let's hope UA-cam's video re-encoding policy doesn't mess this one up. The satellite wheels indicate the time; the yellow wheel shows the seconds, the green wheel shows the minutes, and the cyan one the hours. The planet wheels are just there to keep everything concentric (and to maintain the whole 'planetary gear' idea). Their number is completely arbitrary, 3 is obviously the minimum, and 4 s...
Clione Limacina
Переглядів 3558 місяців тому
Clione Limacina
Mandelbrot to Mandelbar
Переглядів 1,9 тис.9 місяців тому
Morphing the Brot to the Bar, then change the power from 2 to -2, Bar to Brot again, and bringing the power back to 2. I used a binary decomposition for displaying the set, because I felt like it.
20 different methods of inverting the Mandelbrot set
Переглядів 2,1 тис.9 місяців тому
Or: how to get from c to 1/c, and back again. First the cardioid of the main body of the Mandelbrot set is converted to a circle After the inversion the process is reversed so that when a second inversion is applied one gets back to the original image. This instance the sets are displayed by means of a distance estimation method.
Lyapunov Exponents of the series abacbc
Переглядів 1,1 тис.Рік тому
a = 4*sin(2*pi*x) b = 4*cos(2*pi*y) in which x and y are the coordinates of the image. c = 0 to 4, providing the animation
Expanded Mandelbrot set
Переглядів 2,8 тис.Рік тому
The set z = z² dz c, where d is a complex parameter. At d=0 the set reduces to the standard Mandelbrot set that we know and love. The animation has d traversing the Bernoulli Lemniscate in the complex plane, i.e.: Re(d) = cos(phi)/(1 (sin(phi))^2) Im(d) = sin(phi)*cos(phi)/(1 (sin(phi))^2) with phi from pi/2 to 5*pi/2 The set is projected on the 1/c=plane, btw.
Mandelbrot Power Sets aka Multibrot
Переглядів 53 тис.Рік тому
z = z^n c, with n from 2 to 7, to -7 and back to 2. Normally z^n = r^n * exp(n*phi) with r=sqrt(xx yy) and phi=arctan(y/x). In this video z^n = r^n1 * exp(n2*phi) with different choices for n1 and n2 for each frame. Top left: n1=n2=n as standard, other frames n1=1, n1=2n, n1=n/2 etc.
Mandelbrot power sets aka Multibrot sets
Переглядів 23 тис.Рік тому
4 different methods to eponentiate the Mandelbrot set Top left: z^2n c (the generic one) Top right: z^2 c^n Bottom left: z^2n c^n Bottom right: (z^2 c)^n with n from 1 to 5, to -5 and back to 1.
Power morph 4D Mandelbrot cross sections
Переглядів 1,6 тис.Рік тому
This is, for now, my last attempt in exploring the 4D-ness (4D-ity) of the Mandelbrot set, as it exists in (a,b,x0,y0)-space. The lefthand image shows the 3D cross section (a,b,x0) of this 4D set. And the righthand image shows the 3D cross section (a,b,y0). The animation is z=z^n c with n=1..6
Mandelbrot set with complex exponent
Переглядів 7 тис.Рік тому
This is the set z=z^b c, where b is the circle in the complex plane with origin (0,0) and radius 2. The animation is the counterclockwise traversal on this circle. To spice things up a bit, I decided to apply a binary decomposition on the escape radii.
Zoom into Newton's method fractal
Переглядів 2,6 тис.2 роки тому
A quick zoom into Newton's method fractal z = z - p(z) / p'(z) for p(z) = (z-c1)(z-c2)(z-c3), plotting c3-space. c1 = (1,0) and c2 = (-1,0) Based on this video by 3Blue1Brown: ua-cam.com/video/LqbZpur38nw/v-deo.html
Pendulum and magnets experiment in 4D space
Переглядів 1,1 тис.2 роки тому
Another pendulum and magnets chaos experiment, in which the pendulum is suspended in 4D space. The classical pendulum is suspended in 3D space above a 2D plane that holds the magnets. It yields 2D images mapping the starting points to the magnets it ends on. Mathematically there's no problem whatsoever extending this process one dimension higher. So this pendulum is suspended in 4D space and is...
The Mandelbrot set as part of the 4D quadratic formula in 3D
Переглядів 1,2 тис.2 роки тому
The Mandelbrot set as part of the 4D quadratic formula in 3D
The Mandelbrot set as part of the 4D quadratic formula in 3D
Переглядів 7762 роки тому
The Mandelbrot set as part of the 4D quadratic formula in 3D
The Mandelbrot set as part of the 4D quadratic formula
Переглядів 6 тис.2 роки тому
The Mandelbrot set as part of the 4D quadratic formula
Mandelbrot set in fisheye perpective
Переглядів 8 тис.2 роки тому
Mandelbrot set in fisheye perpective
Mandelbrot set projected on a Riemann sphere flattened out to a disc
Переглядів 10 тис.2 роки тому
Mandelbrot set projected on a Riemann sphere flattened out to a disc
Mandelbrot set projected on a flattened out Riemann-sphere
Переглядів 10 тис.2 роки тому
Mandelbrot set projected on a flattened out Riemann-sphere
Mandelbrotset projected on a rotating and shrinking Riemann-sphere
Переглядів 6 тис.3 роки тому
Mandelbrotset projected on a rotating and shrinking Riemann-sphere
Mandelbrot set projected on a shrinking Riemann-Sphere
Переглядів 9 тис.3 роки тому
Mandelbrot set projected on a shrinking Riemann-Sphere
Mandelbrot set projected on a shrinking Riemann-Sphere
Переглядів 13 тис.3 роки тому
Mandelbrot set projected on a shrinking Riemann-Sphere
Mandelbrot set projected on a rotating Riemann-sphere
Переглядів 3,3 тис.3 роки тому
Mandelbrot set projected on a rotating Riemann-sphere
Pendulum and magnets experiment
Переглядів 1,6 тис.3 роки тому
Pendulum and magnets experiment
Lyapunov Exponents Animation cbacbacbaa
Переглядів 2,2 тис.3 роки тому
Lyapunov Exponents Animation cbacbacbaa
Lyapunov Exponents Animation bbbacccb
Переглядів 1,7 тис.3 роки тому
Lyapunov Exponents Animation bbbacccb
Lyapunov Exponents Animation of the series (aaabbbccc)
Переглядів 1,4 тис.3 роки тому
Lyapunov Exponents Animation of the series (aaabbbccc)
Lyapunov Exponents Animation of the series (abcacbcabcbabacbca)
Переглядів 1,2 тис.3 роки тому
Lyapunov Exponents Animation of the series (abcacbcabcbabacbca)

КОМЕНТАРІ

  • @VectorJW9260
    @VectorJW9260 16 днів тому

    At 0:07 you can see that the main cardioid is actually a bulb, or alternatively that all bulbs are technically minibrots

  • @truongquangduylop33yyuh34
    @truongquangduylop33yyuh34 18 днів тому

    Some of my lost fractals (MbLan/Mandelbrowser): z = conj(z)^2 + 1/z + c (tricorn dust, z0 = c) (z = z^2 + c; z = conj(z)^2+c;) Tribrot z = flip(z)^(flip(2)+flip(c) (Flipbrot, convergence)

  • @National_102_the_callmeming
    @National_102_the_callmeming 22 дні тому

    0:48 name this fractal

  • @Scscsc23453
    @Scscsc23453 24 дні тому

    Hey, how dare you hurt my girl? How dare you? That's it? I will grab you. I need to take a bite.

  • @Scscsc23453
    @Scscsc23453 24 дні тому

    What the heck are you strong for you?What the heck lewin what the heck

    • @Scscsc23453
      @Scscsc23453 23 дні тому

      Hey you, what can I take a bite?No?Why? I don't said shut up and now

  • @MaxSpaceUa
    @MaxSpaceUa 25 днів тому

    all the maldenbrots expect the second: BOOM!

  • @MaxSpaceUa
    @MaxSpaceUa 25 днів тому

    BRO SCSCSC pls stop spamming

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    We What the fuck it's a pick up

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    Hey who dare How far to your hurt you're sister

  • @KeaneRambaud
    @KeaneRambaud Місяць тому

    no no no

  • @NothingCWN
    @NothingCWN Місяць тому

    someone took half the comments

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    My sister, my sister, my sister, my sister, my sister, my sister, my sister.Yeah , yeah , yeah , a a a my my sister

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    What the heck, what the heck?No, my sister, what?No, what?How dare you😊

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    Is this the hobbit of my sister a happy to my sister

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    Okay. No no no what happened to my sister😊

  • @windows11elcrack093
    @windows11elcrack093 Місяць тому

    Zoom from fractal to Rieman sphere that with the minibrot you go to the bubble above it

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    Cccccc

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    What have you done to my sister from my Sis?How will you see your pin that?And you're doing that and freaking calling isaac

    • @Scscsc23453
      @Scscsc23453 Місяць тому

      Thanks oh so cute

    • @Scscsc23453
      @Scscsc23453 Місяць тому

      What the what are you doing?No no don't break my sister and my cutie

    • @Idkwholmao
      @Idkwholmao 27 днів тому

      ??????

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    What the what is this

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    No, no, no, no, no Lord.Don't you dare

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    Okay. No, no, no, no, no, no no no, no okay. Okay, I guess I don't forget that.😂😂

  • @Scscsc23453
    @Scscsc23453 Місяць тому

    No no no

  • @K2KeiferAceR.Candava
    @K2KeiferAceR.Candava Місяць тому

    NO IT TURNS TO 3D NOO

  • @K2KeiferAceR.Candava
    @K2KeiferAceR.Candava Місяць тому

    Mandelbrowser

  • @jesskillectssclc5028
    @jesskillectssclc5028 Місяць тому

    0:10

  • @secret_staycation109
    @secret_staycation109 2 місяці тому

    0:30 monobar reverse

  • @truongquangduylop33yyuh34
    @truongquangduylop33yyuh34 2 місяці тому

    One side is the fron, the other is the back

  • @Spaalt3036
    @Spaalt3036 2 місяці тому

    0:07 Monobar

  • @Spaalt3036
    @Spaalt3036 2 місяці тому

    Se is Monobar

  • @memegazer
    @memegazer 2 місяці тому

    This seems like a place to ask...how do I find any information about how the mondelbrot set may be related to spinors?

    • @Arneauxtje
      @Arneauxtje 2 місяці тому

      That's a really interesting question. It could be opening up new areas of investigation, or it could turn out to be trivial. Either way, my knowledge of spinors is not sufficient to say something sensible about the matter.. Hopefully somebody else can. Have you tried posing the question on forums like Quora?

  • @NooneisBADDIE1
    @NooneisBADDIE1 3 місяці тому

    Skbidi hhahahahhha

  • @NooneisBADDIE1
    @NooneisBADDIE1 3 місяці тому

    Fractal wrong!

  • @Cannerandsuolp
    @Cannerandsuolp 3 місяці тому

    its 3d

  • @SergeSheyko
    @SergeSheyko 3 місяці тому

    Do you enjoy this thema? But, instead of negotiation with specialists in it, you invent the bycicle again...

    • @Arneauxtje
      @Arneauxtje 3 місяці тому

      I do indeed enjoy this theme, thank you for noticing. Who are the specialists exactly? And how do I get in touch with them?

  • @SergeSheyko
    @SergeSheyko 3 місяці тому

    The hands are excessive

  • @fishy398
    @fishy398 3 місяці тому

    Interesting how such a beautiful thing could be rendered nearly 10 years ago.

  • @UltraGinormous
    @UltraGinormous 3 місяці тому

    Beautiful, thanks for that.

  • @jarosawjasinski9560
    @jarosawjasinski9560 3 місяці тому

    It's really beautiful movie! I suggest you to make NFT from that. It is very likely that someone would buy it for at least 0.2 ETH, maybe more. Good Luck :)

  • @MartinBuzon
    @MartinBuzon 3 місяці тому

    Ooh so that is how "God" sees us? The fabric of spacetime

  • @Imnotanoob761
    @Imnotanoob761 4 місяці тому

    W I D E

  • @LazPandaIsCool234
    @LazPandaIsCool234 5 місяців тому

    Whas this ChaosPro

  • @mderooij7851
    @mderooij7851 5 місяців тому

    This Has No 360°

  • @mderooij7851
    @mderooij7851 5 місяців тому

    Left Camera: Back Centre Camera: Sided Right Camera: Front

  • @scribbllllll
    @scribbllllll 5 місяців тому

    0:18 19th one *eclipse with glasses 15th without

  • @mderooij7851
    @mderooij7851 5 місяців тому

    This Has No 360°

  • @DTDOfficial
    @DTDOfficial 6 місяців тому

    That looks amazing

  • @iispacealgodooandworld
    @iispacealgodooandworld 7 місяців тому

    0:21 spider on the 6th

  • @__________________________hi52
    @__________________________hi52 7 місяців тому

    Mandelbrot zoom in vs Mandelbrot zoom out

  • @econecoff1725
    @econecoff1725 7 місяців тому

    🛸Some UFO reports sound similar to 4D objects passing through our space, like morphing rubber blobs that suddenly gain connections or lose connections. Possible clue...

  • @lucaspierce3328
    @lucaspierce3328 7 місяців тому

    Holographic Holo-Fractal Stochastic Super-Tension Shape Dynamics!.